

2 CrossTalk—November/December 2015

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Cybersecurity and Modern Tactical Systems
A look at mitigating cybersecurity risks when interconnecting legacy
embedded systems with modern-day tablets or laptops.
by C. Warren Axelrod, Ph.D.

Augmenting the Remotely Operated Automated Mortar
System with Message Passing
How the Message Passing Interface (MPI) can assist a prototype U.S.
Army vehicle mounted mortar launcher system called the Automated
Direct Indirect Mortar (ADIM).
by Zachary J. Ramirez, Raymond W. Blaine,
and Suzanne J. Matthews

Massive Storage in a Miniature (Embedded) Package
Examining the fundamentals of an embedded data storage system, the
thoughts behind the design decisions, and different features to incorpo-
rate in an embedded data storage system.
by Anthony Massa

International Partners with Multi-Site Thin Client
Interconnectivity
With thin client and VPN technology you can save on time and travel
costs while being able to more tightly integrate software and system
changes.
by Brendan Conboy

Threat Modeling for Aviation Computer Security
Threat Modeling is a technique that assists software engineers to
identify and document potential security threats associated with a
software product.
by Abraham O. Baquero, Andrew J. Kornecki, and Janusz Zalewski

Extending Life Cycle Models for a Repeatable
Innovation Strategy
A life cycle methodology with the necessary attributes can increase the
probability for achieving a repeatable process for innovation.
by Duffy Nobles and Kevin MacG. Adams, Ph.D.

Mobile and Embedded Security Mitigations for
Counterfeit Threats and Software Vulnerabilities
Mobile and embedded software teams, users and stakeholders have
historically underestimated the risk of security threats.
by Jon Hagar

12
4

16

19

21

Fusing IT &
Real-Time Tactical

Departments

Cover Design by
Kent Bingham

	 3	 From the Sponsor

	 38	 Upcoming Events

	39	 BackTalk

28

33

mailto:Crosstalk.Articles@hill.af.mil
http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com

CrossTalk—November/December 2015 3

FROM THE SPONSOR

CrossTalk would like to thank NAVAIR for sponsoring this issue.

In the beginning, there was
DoD Standard 2167A for the
development of software for
weapon systems, and DoD
standard 7935A for the devel-
opment of Automated Informa-
tion Systems. East was east and
west was west, and never the
twain would meet – or so we
thought. Would we ever need
the extreme rigor for require-
ments management, design,

documentation, configuration management, technical reviews,
testing, security and safety that were used for military systems
for administrative systems?

Someone thought so. In 1994, east and west not only met
but became one. Military Standard 498 merged 2167A and
7935A to define a set of activities and documentation suitable
for the development of both types of software development.
Shortly afterward, it was cancelled as part of acquisition reform,
and superseded by commercial standards such as IEEE 12207.
But its legacy of fusing tactical and non-tactical systems (also
known as IT – Information Technology and IS – Information
Systems) remains. The world has changed much in the past 20
years, and it is clear that we do need to adjust even more to the
blurring lines of what were at one times two distinctly different
types of software.

The proliferation of mobile technology continues to expand
through the commercial and Federal IT service marketplace. Na-
val Air Systems Command (NAVAIRSYSCOM) is exploring the
value of transitioning “traditional” IT products into highly tactical

environments. The Electronic Kneeboard (EKB) program seeks
to place cutting edge mobile technology directly in the warfight-
er’s hands. EKB will deliver tablet technology for use in every
USN and USMC aircraft in the fleet, providing real-time access
to digital flight information products, imagery, and other tacti-
cal information sources. Program success is dependent upon
productizing traditional Enterprise IT services, like Mobile Device
Management, for bandwidth-constrained tactical scenarios.

EKB is just one of an increasing trend of modern-day tablets
and laptops being used to make up for functionality and ease-
of-use limitations of legacy systems. As long as modern infor-
mation systems and legacy embedded systems remain indepen-
dent of one another, the latter are not subject to conventional
cyber attacks. However, if these systems are interconnected
and interoperate, previously-avoided cybersecurity risks may
be introduced. The article “Cybersecurity and Modern Tactical
Systems” by Warren Axelrod in this issue looks at how these
risks might be mitigated.

Another critical area that we need to manage as we fuse IT
and real-time tactical systems is software safety. Military stan-
dard 882E addresses the levels of control yielded to software,
and prescribes the levels of rigor that need to be applied. It is
possible, and even probable, that devices that were developed
for the commercial world for average consumers will also be
integrated into our military systems – not just for off-line use.
We need to be mindful of not only the benefits but also to apply
the appropriate rigor of the new world we are in.

Al Kaniss
Software Engineering Branch Head
NAVAIR

4 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

Cybersecurity and
Modern Tactical
Systems
C. Warren Axelrod, Ph.D., Delta Risk LLC

Abstract. Many legacy embedded systems, such as aircraft flight-control
systems and weapon fire-control systems, continue in use decades after their
introduction. At the same time, we are seeing modern-day tablets and laptops
being used to make up for functionality and ease-of-use limitations of legacy
systems. As long as modern information systems and legacy embedded systems
remain independent of one another, the latter are not subject to conventional
cyber attacks. However, if these systems are interconnected and interoperate,
previously-avoided cybersecurity risks may be introduced. This article looks at
how these risks might be mitigated.

Background
Since the advent of digital computers more than a half-cen-

tury ago, we have seen IT (information technology) and control
software advance much more rapidly than underlying technolo-
gies inherent in military aircraft, ships and ground vehicles and
weapons. Physical equipment may have to remain in use well
beyond their anticipated decommissioning date, especially if
replacements have been delayed or not approved. Such equip-
ment will eventually contain obsolescent computer hardware
and software components. Such outdated components ham-
per the effectiveness of their hosts. In response, programs to
modernize older equipment by adding or fusing IT systems onto
legacy systems are undertaken. This approach, however, intro-
duces cybersecurity issues, which we will examine in this article.

Relative Useful Lives of Systems
Donzelli [1] describes how the operational lifespan of military

aircraft has increased from about 15-20 years in the 1940s to
about 40-60 years at the turn of the 21st century. The same
holds true for some artillery in the author’s experience. On
the other hand, computer technologies generally have a much
shorter lifespan, with software mostly in the 5-15 year range
according to Tamai [2], and successful software lasting about
10-20 years, per Rajlich [3]. Hardware technologies and pro-
gramming languages have seen new generations every decade
or so since the 1940s as in Table 1.

From a categorization perspective, the first three genera-
tions, shown in Table 1, took some 30 years in total (averaging
a decade for each generation of computer technology), whereas
the fourth generation underlying technology (integrated circuits
and microprocessors) has lasted for more than 40 years. This
is somewhat misleading since there have been major advances
in size reduction and lower costs for computer devices. As in-
dicated in the column with other noteworthy events, there were
also game-changing advances such as the GPS system, which

began in 1973, the World Wide Web and the introduction of
Ethernet, which both began in 1980, and the adoption of mobile
computing, which took off in 2005.

The underlying thesis is that in today’s military aircraft, ships,
vehicles, weapons and munitions can have useful lives of half-
a-century or more, whereas computer equipment and software
offer new generations within in a 10-20 year cycle. Conse-
quently, one might expect the computer hardware and software
to be updated between two and five times over the lifetime of
the equipment. While this type of cycle is reasonable for control
systems and data processing systems, it does not account for
game-changing “noteworthy events” such as the Web, GPS,
mobile computing and touch screens. These paradigms are
often dealt with by “bolting on” additional capabilities that were
not anticipated when the original systems were designed. As we
shall discuss later, software engineers usually do not account for
the exposure to cybersecurity attacks.

Software components and communications networks have
become increasingly critical to the effective operation of
mission-critical resources. Hence there is a push to transition to
newer computer and communications technologies and infra-
structures. However, in many cases, newer technologies have to
be bolted onto legacy systems rather than being incorporated
during the design, development and manufacture of software
and devices.1 The former approach results in a significantly high-
er cybersecurity risk, as systems, which were previously physi-
cally and logically independent, are interconnected into systems
of systems [7]. It takes an understanding both of modern com-
puter and communications technologies and the technologies
incorporated in older embedded systems to be able to design
and develop overall systems that demonstrate acceptable levels
of safety and security [10].

Cyber-Physical Systems
A critical issue with IT systems, which did not plague embed-

ded systems until very recently, is the high likelihood of cyberse-
curity compromise, which not only affects the IT systems them-
selves but also any other systems with which they interoperate.

To better understand what is taking place, we will examine
the general structure of cyber-physical systems. NIST defines
cyber-physical systems as “the tight conjoining of and coordina-
tion between computational and physical resources.” Figure 1
illustrates such a relationship.

It is important to distinguish between control and administrate
applications, which are usually built into embedded systems and
accessed (when necessary) by administrators or operators, and
data-processing or IT systems, which are separately developed
or acquired applications, which are operated by internal or exter-
nal end users. As long as these systems operate independently,
there is little risk of cyber attack. However, it is when these
systems are interfaced logically (shown by the double-ended
arrow) that cybersecurity problems arise, particularly when the
interoperability was not contemplated.

Legacy military real-time embedded systems, such as
flight-control systems found in older aircraft and fire-control
systems still operating in older weapons, were never designed
to be connected to modern information systems, which are
often connected to the Internet, let alone fused with them into

CrossTalk—November/December 2015 5

FUSING IT & REAL-TIME TACTICAL
Table 1: Evolution of Computer-Related Resources

Generation Period Computer Technologies [4]
[6]

Programming Languages
[5] [6]

Noteworthy Events

1 1940 - 1956 • Vacuum tubes (logic)
• Punched cards and

printers (input/output)
• Magnetic drums

(memory)
• Punched cards and

paper tape (external
storage)

• Machine language
• Assembly languages

• Computers were huge
machines that contained
vacuum tubes and relays that
failed frequently

• Only very few expensive
machines were available,
mostly to the military and
academics

• Data centers and their
computer systems controlled
by a small number of “gurus”

2 1956 – 1963 • Transistors (logic)
• Magnetic tapes and

disks (input/output)
• Magnetic core matrices

(memory)
• Magnetic tape (external

storage)

• High-level
programming
languages –
FORTRAN, COBOL

• Commercial data centers
• Financial and accounting

applications
• Increased numbers of

computer programmers and
systems analysts

3 1964 - 1971 • Integrated circuits (logic
and internal memory)

• Dumb terminals
(input/output)

• Magnetic tapes and
disks (external storage)

• Database languages –
Sybase, Oracle

• User-friendly
languages – BASIC,
C, Pascal

• Remote job entry and printing
• Multiprocessing – two of

more processors within a
single computer system

• Multiprogramming – two or
more programs on a single
computer system

• Range of compatible
machines, e.g., IBM 360
series, enabling scalability

4 1971 -
Present

• Microprocessors (logic)
• Keyboard & monitor

(input/output)
• LSI and VLSI memory

chips (internal memory)
• Magnetic tapes and

disks (external storage)

• Object-oriented
languages – Java,
Ada, C++

• Timesharing
• Virtual computing
• Personal computer, tablet
• Graphical user interface (GUI)
• Mouse, touch pad
• Grid computing
• Global Positioning (GPS)
• Internet, World Wide Web
• Ethernet
• Mobile computing

5 Present and
Beyond

• Artificial intelligence
• Virtual reality
• Quantum computers

• Natural languages • Real-time sharing
• Semantic Web

	

Figure 2. Threats, Exploits and Consequences for
Systems of Systems (Source: Axelrod [10])

Figure 1. Cyber and Physical Components of
Cyber-Physical Systems (Source: Axelrod [11])

6 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

tightly-bound cyber-physical systems. Yet, as we have discussed,
there is an increasing need to extend the useful lives of legacy
resources that continue in service well beyond their expected
useful lives.

There are a number of ways in which the useful life of legacy
software systems can be extended in order to avoid having to
replace existing systems or bolt on modern front-end systems.2
However, the use of these latter systems, many running on
personal computers and tablets that are in turn connected to
the Internet, is inevitable since organizations, such as the DoD,
cannot afford to provide required functionally via the traditional
approach of building the systems in-house.

Security and Safety of Cyber-Physical Systems
When IT systems (which are connected to private and public

networks) and embedded systems (which historically have been
standalone with restricted access) are interfaced, one with the
other, the overall system of systems is vulnerable to threats
typical of both types of system and subject to the consequences
of both hacking of front-end IT systems and the malfunctioning
and failure of the back-end control systems. This situation is
illustrated in Figure 2.

The diagram shows that security-critical information systems,
which are connected to public networks (such as the Internet),
are affected by both external and internal threats and exploits,

Table 2a. Threats, Vulnerabilities and Security Measures by Evolution Phase

Evolution Phase Characteristics Threats/Vulnerabilities Security Measures

1. a. Mechanical
b. Analog
c. Electro-
mechanical

• Devices manufactured by hand by
craftsmen

• Relatively simple designs that can be
easily operated/repaired

• Systems usually operated by
mechanical and (later)
electromechanical means

• Devices may be operated by
enemy if captured

• Devices may behave in
unexpected ways, leading to
malfunction and/or failure

• Electromechanical components
dependent on power source

• Place equipment in secured area
• Use mechanism to disable system,

e.g., remove key, if system is to fall
into enemy hands

• Train operators in security procedures

2. Digital • Move from analog to digital
• Initial hybrid systems
• Physically isolated systems
• Specialized knowledge needed to

develop and operate systems
• Specific programming languages

and software utilities
• Designed for particular purposes
• High degree of obsolescence
• High replacement costs
• Frequent failures or malfunctions
• Long response and repair times
• Use of redundancy for higher

availability

• Insider threat –insider turned
rogue

• Kidnapping, defection, physical
and fiancial threats, bribery,
spying and industrial espionage

• Inadvertent/unintentional data
errors and operational mistakes

• Systems behave in unexpected
ways, leading to malfunction
and/or failure

• Can sometimes be used by enemy
if captured

• Place equipment in secured area
• Limit electronic access via hard-wired

devices placed in secured areas
• Monitor employees, contractors, and

others (such as suppliers’ staff)
• Remove components, e.g., hard

drives from computer systems and
lock in a safe in a secured area

3. Standardized • Standard project management
• Use of more generalized hardware

and software platforms
• Isolated embedded systems
• Fewer programming languages,

ideally one, e.g., Ada [14]

• Off-the-shelf software and
hardware components have lower
repair times since parts more
readily available and more
programmers trained in standard
language

• Greater ubiquity means that more
people will be familiar with
products and likely know their
weaknesses

• Place equipment in secured area or
area that can be monitored

• Limit access to software products
themselves to those who have a need,
e.g., installers, system support

4. Networked • Linking together of proprietary
systems on dedicated private
networks

• Networked systems only as
secure as their weakest link

• Networks open up additional
threats and vulnerabilities vs.
standalone systems

Logical

• Use proprietary network protocols
• Create subnets where feasible

Physical

• Isolate equipment, e.g., place routers
in locked areas , create subnets

5. Off-the-Shelf
and Open
Systems

• Use of commercially-available
applications, software utilities and
computer hardware

• Connection over private and public
networks

• Uncertainty with respect to
provenance

• Little or no control over supply
chains

• Poor support of open source in
some cases

Logical

• Use approved and certified software
• Use proprietary network protocols
• Create subnets where feasible

Physical

• Use approved and certified hardware
• Isolate equipment, e.g., place routers

in locked areas

CrossTalk—November/December 2015 7

FUSING IT & REAL-TIME TACTICAL

whereas safety-critical control systems traditionally were
minimally affected by external threats, if at all. Also, designers
and developers of security-critical information systems formerly
were not concerned about their systems causing physical
harm or damage to the environment. However, when informa-
tion and control systems are interconnected, they inherit both
the positive and negative characteristics of both. In particular,
information systems might be a conduit for malware into control
systems and information systems take on some of the liability
for malfunctions or failures of the control systems. It appears
that the bulk of the responsibility for protecting the overall

software environment lies with the information systems since
they present the pathways for malicious activities. Neverthe-
less, software engineers need to understand the implications of
adverse behavior of the control systems since they must focus
their attention on protecting against particular events, such as
crashes of vehicles or inaccurate aim of weapons.

Brief History of Real-Time Tactical Computer
Systems

The evolution of real-time naval tactical digital computer sys-
tems began with the transition from analog systems in the early

Table 2b. (continued from 2a) Threats, Vulnerabilities and Security Measures by Evolution Phase

Evolution Phase Characteristics Threats/Vulnerabilities Security Measures

6. Web
Applications

• Search
• Email, messaging
• Posting of blogs/comments
• E-commerce

• Significant exposure to others on
the Internet

• Vulnerable to social engineering,
e.g., phishing, links to dangerous
websites

Logical

• Implement threat modeling
• Subscribe to exploit, vulnerability, and

incident information sharing and
analysis services

• Invoke static and dynamic testing
• Use white listing and black listing of

websites
• Use deception (see [15] – honey pots,

fake systems

Physical

• Install security software, e.g.,
antivirus, firewalls

• Use strong authentication, e.g.,
biometrics

• Enable tracking and “wipe” software
• Turn off equipment when not in use,

where feasible
• Only use approved computer

hardware and software
7. Mobile • CMDs (Commercial Mobile Devices)

typically use broadband or Wi-Fi to
connect to the Internet

• Significant exposure to others on
the Internet

• Vulnerable to social engineering,
e.g., phishing, links to dangerous
websites

Logical

• Threat modeling
• Exploit, vulnerability, and incident

information sharing and analysis
• Static and dynamic testing
• Only use approved apps

Physical

• Install security software, e.g.,
antivirus, firewalls

• Use strong authentication, e.g.,
biometrics

• Enable tracking and “wipe” software
• Turn off equipment when not in use,

where feasible
• Only use approved equipment

8. Cloud
Computing

• Software-as-a-Service (SaaS)
• Platform-as-a-Service (PaaS)
• Infrastructure-as-a-Service (IaaS)

• Exposure generally to others on
the Internet

• Vulnerable to social engineering
• Exposure to others using same

cloud service provider
• Legal disclosure
• Interoperability issues
• Portability (difficulty in changing

services)
• Scalability

Logical

• Ensure effective partitioning, i.e.,
isolation from other customers

• Implement security measures
• Ensure privacy is protected

Physical

• Isolate equipment, e.g., place routers
in locked areas

8 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

1960s with the Naval Tactical Data System (NTDS) according
to David Boslaugh’s detailed accounts [12], [13]. The original
digital computers were standalone minicomputers connected to
analog servomechanism-based control systems.

In Tables 2a and 2b we show the characteristics of this and
subsequent phases of the evolution of such systems, the threats
and vulnerabilities that make up the risks to and from them and
what measures can be put in place to mitigate those risks.

Beginning with Phase 5, we see that systems become
exposed to increasing outside threats due to connection to
public networks such as the Internet, initially through separate
systems, but increasingly with interconnected and interoperating
architectures.

Certification
Certification is mandatory for software aboard commercial

aircraft, for example. The basic certification standard used is
DO-178C [16], which superseded DO-178B in January 2012.
This standard has been adopted by the DoD as guidance for
certifying military avionics [17].

The DO-178C certification standard categorizes types of
software as to the severity of the consequences if the system
were to fail. This is shown in Table 3.

This clearly shows that the standards are much more strin-
gent for flight control and management systems, as would be
expected since the consequences of failure are usually cata-
strophic. Onboard information systems, on the other hand, are
shown to have minimal consequences. As long as the informa-
tion systems, which include tablets used by pilots for navigation
purposes, which have caused the grounding of commercial
aircraft [18], are kept separate from the control systems, such
classification appears to be reasonable. However, as soon as
links between the two are created, then a cyberattack can have
catastrophic consequences. The risk from on-board entertain-
ment systems may be less for military aircraft compared to
civilian commercial planes, but the risk from CMDs is likely to be

the same if not greater for military aircraft.
In Figure 3 we illustrate how cyber-physical systems can be

shown as layers with IT systems at the perimeter and control
systems at the center. The various levels can be entered by cer-
tain authorized groups and by attackers if the systems as fused
together since there may not be effective barriers to entry or for
exfiltrating sensitive information and control data.

It is important to consider such systems of systems holisti-
cally from both the security and safety perspectives which can
be achieved only if information security professionals and safety
engineers work collaboratively throughout the system develop-
ment lifecycle, including operation, updating and decommission-
ing.

Cybersecurity Risk of Safety-Critical Systems
The DoD chief information officer, Teri Takai, announced on

March 12, 2014 that DIACAP (DoD Information Assurance Cer-
tification and Accreditation Process) was to be replaced as of
that date by the NIST (National Institute of Standards and Tech-
nology) risk management framework governed by NIST Special
Publications SP 800-37, SP 800-39 and SP 800-53 [19].

NIST SP 800-53 [20] provides a three-tiered risk manage-
ment approach that addresses strategic and tactical risk at
the corresponding organization, mission/business process and
information system levels.

A Risk Management Framework (RMF) is presented in SP
800-53. The RMF consists of six steps as follows:

•	 Categorize information systems based on impact
	 assessment

•	 Select the applicable security control baseline
•	 Implement the security controls and document their

	 design, development and implementation details
•	 Assess security controls as to their meeting security

	 requirements
•	 Authorize information system operation
•	 Monitor security controls

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
the areas of emphasis we are looking for:

Integration and Interoperability
May/Jun 2016 Issue

Submission Deadline: Dec 10, 2015

CMMI - The Agile Way
Jul/Aug 2016 Issue

Submission Deadline: Feb 10, 2016

Supply Chain Risks in Critical Infrastructure
Sep/Oct 2016 Issue

Submission Deadline: Apr 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

CrossTalk—November/December 2015 9

FUSING IT & REAL-TIME TACTICAL

As described in [10] for software systems generally and in
[21] for avionics software, security requirements have to be
inserted early in the software development lifecycle and carried
through design, development, testing and implementation.

In [21] the author quotes Robert Dewar, president of Ad-
aCore, as saying “We have fortunately not experienced an
aircraft accident where a software bug has resulted in loss of
human life.” Sadly, the was a recent accident in which an Airbus
A400M military cargo and troop transport plane crashed on a
test flight on May 9, 2015 and resulted in the deaths of four
persons. Several weeks later it was revealed that the crash was
caused by faulty software installation [22].3

Kidnapping, Defection, Threats, Bribery, Spying
and Industrial Espionage

One might ask why these topics are mentioned in an article
about cybersecurity. Surely today’s major concerns relate to
cyber rather than physical attacks? Don’t such methods as
kidnapping belong to a bygone era when computers operated in
isolation in guarded data centers and there was no way for out-
siders to access the systems? The reality is that there may often
be a physical component even when the most visible aspect of
an attack is via the Internet.

As far back as the 1960s and 1970s even civilian computer
security experts were concerned about being kidnapped by
foreign powers to gain access to their specialized knowledge of
“system internals,” the underlying software that controls the op-
eration of computers.4 Since the early 1990s there have been a
number of movies, such as Sneakers, (1992), Swordfish (2001),
Firewall (2006) and Live Free or Die Hard (2007), that were
based on the idea that experts could be kidnapped by criminals
and forced to give up information on how computer systems in
the government and private sectors could be used for nefarious
purposes.

While reporters are quick to publicize major cyber attacks
against computer systems, where huge amounts of sensitive
personal data and intellectual property are obtained, as being
the work of hackers in Russia, North Korea, Iran, China and the
like, few mention that many attacks are facilitated by insider
knowledge of the systems and analysis of the stolen data
requires subject-matter expertise. This expert knowledge can
only be obtained from insiders, former employees or contractors,
whether voluntarily (by defectors), involuntarily (from kidnapping,
threats) or accidentally (via social engineering).

Therefore, when it comes to protecting modern tactical
systems, one must not only consider the possibility of hacking
into operational systems and taking over control systems, but
also consider cyber and physical attacks against defense and

Table 3. RTCA/DO-178C standard applied to aircraft certification

Figure 3: The Systems “Onion” Showing Access and Data Exfiltration

intelligence agency and contractor systems and personnel, and
against former employees and contractors, to obtain informa-
tion about the design, programming and operation of tactical
systems.

Conclusion
Perhaps the best way to ensure that real-time tactical

systems are not subjected to cyber attacks is to keep them
separate from IT systems, particularly those IT systems that use
commercial and open-source software and hardware. However,
this is increasingly less feasible for technological and economic
reasons. We just have to face the fact that there is pressure
to use relatively inexpensive off-the-shelf technology and free
open-source software components and to interface these
systems, via loose coupling or tight interoperability, with legacy
systems in order to attain desired levels of functionality and
usability.

Given this situation, it is important to take a proactive stance
by examining the cybersecurity impact of each and every
change to cyber-physical system environments, rather than just
succumb to pressure and respond to problems as they occur. In
addition, if modern IT systems, particularly those that access the
Internet or utilize cloud-computing services, are to be integrated
with legacy real-time tactical systems so that they interoper-
ate, then it is necessary to go through extensive validation and
verification of the combined system to ensure that the tactical
control systems cannot be compromised by someone entering
the combined system via the front-end IT system.

System Type of System Level A
(Catastrophic)

Level B
(Hazardous)

Level C
(Major)

Level D
(Minor)

Flight control Control X
Cockpit display and controls Control X
Flight management Control X
Brakes and ground guidance Control X
Centralized alarms management Information X
Cabin management Information X
Onboard communications Information X

	 	

10 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

NOTES

1.	 In order to extend the useful lives of various munitions, GPS and inertial guidance
systems and adjustable tail fins were added to existing projectiles and bombs.
These add-on features provide much greater precision in hitting a target and may
also extend the range. Two examples are the Excalibur 155 mm precision-guided
artillery shell [8] and the JDAM bomb [9]. In these cases, existing “dumb” muni-
tions are retrofitted with the requisite technologies.

2.	 A number of these methods, such as using software wrappers and executing leg-
acy code on modern microprocessors, are described in an article in the December
2001 issue of CrossTalk, which has the title “Software Legacy Systems: Bridging
the Past to the Future.” This issue is available at <http://www.crosstalkonline.org/
back-issues/>

3.	 In August 2005, the author happened to be on a brand-new cruise ship leaving St.
Petersburg. The ship suddenly stopped and did not move again for about five hours.
The captain, in an attempt to assuage passenger concerns, reported that we had
not run aground but that the engines had failed due to a “software problem.” As
more vehicles are built with software-managed and “fly-by-wire” control systems,
this type of problem will surely become much more common. While the risk to
cruise-ship passengers may be small, the same claim cannot be made for aircraft,
trains or road vehicles.

4.	 The author was aware, in the 1970s, of a group of a dozen experts in a particu-
lar computer system who were so concerned about being kidnapped that they
organized a formal contact system. In one case, a member of the group was at an
airport, about to board a plane, when he called his colleagues. The latter validated
his concerns about whom he was supposedly meeting and he cancelled the trip.

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

Dr. C. Warren Axelrod is a senior consul-
tant with Delta Risk LLC , a Chertoff Group
Company, specializing in cyber security,
risk management and business resiliency.
Previously, he was the Business Informa-
tion Security Officer and Chief Privacy
Officer for US Trust. He was a found-
ing member of the FS/ISAC (Financial
Services Information Sharing and Analysis
Center) and represented national financial
services cyber security interests during
the Y2K date rollover. He testified before
Congress in 2001 on cyber security. His
recent books include Engineering Safe
and Secure Software Systems (Artech
House, 2012) and Outsourcing Information
Security (Artech House, 2004). He holds
a Ph.D. in managerial economics from
Cornell University, and a B.Sc. in electrical
engineering and an M.A. in economics and
statistics from Glasgow University. He is
certified as a CISSP and CISM.

Phone: 917-670-1720
E-mail: waxelrod@delta-risk.net

ABOUT THE AUTHOR

mailto:waxelrod@delta-risk.net
http://www.crosstalkonline.org/back-issues/
http://www.crosstalkonline.org/back-issues/
mailto:309SMXG.Recruiting@us.af.mil
http://www.facebook.com/309SoftwareMaintenanceGroup

CrossTalk—November/December 2015 11

FUSING IT & REAL-TIME TACTICAL

REFERENCES

FURTHER READING

1.	 Donzelli, Paolo, and Roberto Marozza. “Customizing the Software Process to Support
Avionics Systems Enhancements,” CrossTalk, 4.9, (September 2001):10-14.

2.	 Tamai, Tetsuo, and Yohsuki Torimitsu, Software Lifetime and its Evolution Process
over Generations. Proc. of the Conf. on Software Maintenance. Durham, UK, 1992:
63-69. < http://tamai-lab.ws.hosei.ac.jp/pub/icsm92.pdf> 7 June 2015.

3.	 Rajlich, Václav “Software Lifespan Models,” Chapter 2 in Václav Rajlich (ed.)
Software Engineering: The Current Practice. Boca Raton, FL: Chapman and Hall/
CRC, 2011. 19-30.

4.	 Beal, Vanie. “The Five Generations of Computers,” Webopedia, 22 April 2015.
<http://www.webopedia.com/DidYouKnow/Hardware_Software/FiveGenerations.
asp>. 7 June 2015.

5.	 “The Five Generations of Software,” RBV Web Solutions, 20 March 2000. <http://
www.rbvweb.net/software.html> 7 June 2015.

6.	 “The Four Generations of Computer Hardware,” RBV Web Solutions , 10 December
2005. <http://www.rbvweb.net/generations.html> 7 June 2015.

7.	 Baldwin, Kristen, Judith Dahmann, and Jonathan Goodnight, “Systems of Systems
and Security: A Defense Perspective,” 14.2 INCOSE Insight (July 2011): 22-25.
<http://www.acq.osd.mil/se/docs/SoS-Security-INCOSE-INSIGHT-vol14-issue2.
pdf>

8.	 “M982 Excalibur,” Wikipedia. <http://en.wikipedia.org/wiki/M982_Excalibur> 7
June 2015

9.	 Harris, Tom. “How Smart Bombs Work” 20 March 2003. Howstuffworks.com.
<http://science.howstuffworks.com/smart-bomb.htm> 7 June 2015

10.	 Axelrod, C. Warren. Engineering Safe and Secure Software Systems, Norwood, MA:
Artech House, 2012.

11.	 Axelrod, C. Warren. Mitigating the Risks of Cyber-Physical Systems, Proc. of the
2013 IEEE LISAT Conf., Farmingdale, NY, 2013.

12.	 D,L. Boslaugh, “First-Hand: No Damned Computer is Going to Tell Me What to DO
- The Story of the Naval Tactical Data System, NTDS. Engineering and Technol-

1.	 Axelrod, C. Warren. “Trading Security and Safety Risks within Systems of Systems,” 14.2 INCOSE Insight (July 2011): 26-29.
2.	 Corman, David. “The IULS Approach to Software Wrapper Technology for Upgrading Legacy Systems, 14.12 CrossTalk, (December 2001): 9-13.
3.	 DoD Inspector General, Improvements Needed with Tracking and Configuring Army Commercial Mobile Devices. Report No. DODIG-2013-060, March 26, 2013.
4.	 Hecht, Herbert. Systems Reliability and Failure Prevention, Norwood, MA: Artech House, 2004.
5.	 Joyce, Robert R. History of the AN/UYK-20(V) Data Processing System Acquisition and its Impact on Tactical Systems Development, Master’s Thesis, Naval Postgraduate School,

Monterey, CA, September 1976.
6.	 Kölle, Raine, Garick Markarian, and Alex Tartar, Aviation Security Engineering: A Holistic Approach, Norwood, MA: Artech House, 2011.
7.	 Kornecki, Andrew J., and Janusz Zalewski. “The Qualification of Software Development Tools from the DO-178B Certification Perspective,” 19.4 CrossTalk, (April 2006): 19-22.
8.	 Kornecki, Andrew J., and Janusz Zalewski. “Certification of Software for Real-Time Safety-Critical Systems: State of the Art.” 5.2 Innovations in Systems and Software Engineer-

ing, (June 2009): 149-161.
9.	 Leveson, Nancy G. Engineering a Safer World: Systems Thinking Applied to Safety. Cambridge, MA: MIT Press, 2011
10.	 Littlejohn, Kenneth, Michael V. DelPrincipe, Jonathan D. Preston, and Ben A. Calloni. “Reengineering: An Affordable Approach for Embedded Software Upgrade,” 14.12 CrossTalk,

(December 2001): 4-8.
11.	 Luke, Jahn A., Douglas . Halderman, and William J. Cannon. “A COTS-Based Replacement Strategy for Aging Avionics Computers, 14.12 CrossTalk (December 2001):14-17.
12.	Rosengard, Phillip I. Avionic Computer Software Interpreter, Patent No. US6564241, May 13, 2003.
13.	Spitzer, Cary R. Ed. Avionics: Elements, Software and Functions, Boca Raton, FL: CRC Press, 2007.
14.	Swassing, Margaret M. “A Brief History of Military Avionics.” 2014 SFTE (The Society of Flight Test Engineers)/SETP (The Society of Experimental Test Pilots) Southwest

Symposium, Fort Worth, TX, October 24-26, 2014.

ogy History Wiki <http://ethw.org/First-Hand:No_Damned_Computer_is_Go-
ing_to_Tell_Me_What_to_DO_-_The_Story_of_the_Naval_Tactical_Data_Sys-
tem,_NTDS> 7 June 2015

13.	D.L. Boslaugh, When Computers Went to Sea: The Digitization of the United States
Navy, Los Alaminos, CA: IEEE Computer Society, 1999.

14.	Brosgol, Benjamin M. “Ada 2005: A Language for High-Integrity Applications.” 19.8
CrossTalk, (August 2006}: 8-11.

15.	 Almeshekah, Mohammed H., and Eugene H. Spafford, “Using Deceptive Information
in Computer Security Defenses.” 4.3 Int. J. of Cyber Warfare and Terrorism, (July-
September 2014): 63-80.

16.	 “DO-178C,” Wikipedia, 5 January 2012. <http://en.wikipedia.org/wiki/DO-178C> 7
June 2015.

17.	 Romanski, George. “The Challenges of Software Certification,” CrossTalk 14.9,
(September 2001): 15-18.

18.	 BBC News, “American Airlines planes grounded by iPad app error,” 29 April, 2015.
<http://www.bbc.com/news/technology-32513066> 7 June 2015

19.	 Perera, David. “DoD Abandons DIACAP in Favor of the NIST Risk Management
Framework.” FierceGovernmentIT. < http://www.fiercegovernmentit.com/story/
dod-abandons-diacap-favor-nist-risk-management-framework/2014-03-18> 7 June
2015

20.	 National Institute for Science and Technology. Security and Privacy Controls for
Federal Information Systems and Organizations, NIST Special Publication 800-53
Revision 4, April 2013 (updated as of 22 January 2015). < http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf> 7 June 2015

21.	Howard, Courtney E. “Safety- and security-critical avionics software.” Military &
Aerospace Electronics, 1 February, 2011. <http://www.militaryaerospace.com/
articles/print/volume-22/issue-2/technology-focus/safety-and-security-critical-
avionics-software.html> 7 June 2015

22.	Wheatley, Mike. “Faulty Software Install Led to Airbus A400M Plane Crash,”
SiliconAngle, 1 June 2015. < http://siliconangle.com/blog/2015/06/01/faulty-
software-install-led-to-airbus-a400m-plane-crash/> 7 June 2015.

http://tamai-lab.ws.hosei.ac.jp/pub/icsm92.pdf
http://www.webopedia.com/DidYouKnow/Hardware_Software/FiveGenerations.asp
http://www.webopedia.com/DidYouKnow/Hardware_Software/FiveGenerations.asp
http://www.rbvweb.net/software.html
http://www.rbvweb.net/software.html
http://www.rbvweb.net/generations.html
http://www.acq.osd.mil/se/docs/SoS-Security-INCOSE-INSIGHT-vol14-issue2.pdf
http://www.acq.osd.mil/se/docs/SoS-Security-INCOSE-INSIGHT-vol14-issue2.pdf
http://en.wikipedia.org/wiki/M982_Excalibur
http://science.howstuffworks.com/smart-bomb.htm
http://ethw.org/First-Hand:No_Damned_Computer_is_Go-ing_to_Tell_Me_What_to_DO_-_The_Story_of_the_Naval_Tactical_Data_Sys-tem,_NTDS
http://ethw.org/First-Hand:No_Damned_Computer_is_Go-ing_to_Tell_Me_What_to_DO_-_The_Story_of_the_Naval_Tactical_Data_Sys-tem,_NTDS
http://ethw.org/First-Hand:No_Damned_Computer_is_Go-ing_to_Tell_Me_What_to_DO_-_The_Story_of_the_Naval_Tactical_Data_Sys-tem,_NTDS
http://ethw.org/First-Hand:No_Damned_Computer_is_Go-ing_to_Tell_Me_What_to_DO_-_The_Story_of_the_Naval_Tactical_Data_Sys-tem,_NTDS
http://ethw.org/First-Hand:No_Damned_Computer_is_Go-ing_to_Tell_Me_What_to_DO_-_The_Story_of_the_Naval_Tactical_Data_Sys-tem,_NTDS
http://en.wikipedia.org/wiki/DO-178C
http://www.bbc.com/news/technology-32513066
http://www.fiercegovernmentit.com/story/dod-abandons-diacap-favor-nist-risk-management-framework/2014-03-18
http://www.fiercegovernmentit.com/story/dod-abandons-diacap-favor-nist-risk-management-framework/2014-03-18
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://www.militaryaerospace.com/articles/print/volume-22/issue-2/technology-focus/safety-and-security-critical-avionics-software.html
http://www.militaryaerospace.com/articles/print/volume-22/issue-2/technology-focus/safety-and-security-critical-avionics-software.html
http://www.militaryaerospace.com/articles/print/volume-22/issue-2/technology-focus/safety-and-security-critical-avionics-software.html
http://www.militaryaerospace.com/articles/print/volume-22/issue-2/technology-focus/safety-and-security-critical-avionics-software.html
http://siliconangle.com/blog/2015/06/01/faulty-software-install-led-to-airbus-a400m-plane-crash/
http://siliconangle.com/blog/2015/06/01/faulty-software-install-led-to-airbus-a400m-plane-crash/
http://siliconangle.com/blog/2015/06/01/faulty-software-install-led-to-airbus-a400m-plane-crash/

12 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

1. Introduction
	 The U.S. Army is developing a system called the

Automated Direct Indirect Mortar (ADIM) system [1]. The ADIM
is mounted to a high mobility multipurpose wheeled vehicle
(HMMWV) and fires belt-fed 81mm mortar rounds. This system
increases the capability of the conventional mortar by adding
some key features. The most important features are the speed at
which it can fire, stabilize, and re-fire, and the ability to conduct
“shoot and scoot” missions. Shoot and scoot missions provide a
key advantage, allowing the mortar operators to fire and leave
the area before an enemy can acquire their location via radar
and counter fire. This increased capability of lethality, provided by
the rate of fire, survivability, and increased mobility, is essential
to maintaining our technological superiority on the battlefield.
However, the ADIM cannot be used to its full potential because
of a limitation with current 81mm mortar rounds. Current mortar
rounds must have their fuzes manually set prior to being loaded
into the ADIM. This requires the system to be unloaded if the de-
sired fuze setting is not available in the magazine, severely limiting
the speed of operation.

	 In order for the ADIM system to reach its full and future
potential, 81mm rounds must have several key qualities that
current munitions lack. First, they must be “smart”, accepting GPS
locations allowing for flight alteration and precision fires. Second,
the round’s fuze setting must be able to be set and changed
remotely. These capabilities do not currently exist. Additionally, the
system must have a user-friendly interface, the rounds must be
initially powered from the battery of a HMMWV, and they must
retain power for the duration of flight.

	 An undergraduate capstone project at the United States
Military Academy (USMA) called Remotely Operated Automated
Mortar System (ROAMS) attempted to tackle these shortcom-
ings during the 2013-2014 academic year. In the first iteration of
this multi-year project, the focus was to optimize the fuze setting
remotely.

Augmenting the Remotely
Operated Automated Mortar
System with Message Passing
Zachary J. Ramirez, United States Military Academy
Raymond W. Blaine, United States Military Academy
Suzanne J. Matthews, United States Military Academy

Abstract. This paper looks at how the Message Passing Interface (MPI) can
assist a prototype U.S. Army vehicle mounted mortar launcher system called the
Automated Direct Indirect Mortar (ADIM). The ADIM’s capabilities are augmented
by the Remotely Automated Mortar System (ROAMS) by enabling fuzes to be set
remotely. The performance of the initial ROAMS prototype, a threaded Python
server using Raspberry Pis, is limited by Python’s Global Interpreter Lock (GIL).
In this paper, the prototype is redesigned using MPI and the C programming
language to dramatically improve the efficiency of the system.

The ROAMS system uses Raspberry Pis to simulate the hard-
ware of the magazine server and individual smart-round mortars.
The Raspberry Pi [2] is a popular, credit-card sized single-board
computer (SBC) that retails for $35.00. The choice of Raspberry
Pis enables the design team to cheaply prototype the hardware
that would eventually be included in a custom integrated circuit
(IC) for the smart rounds. Due to its ease of programmability,
Python was selected as the language of choice to program the
magazine server. The magazine server communicated with the
smart-round Raspberry Pis using Python threads, simulating a
classic “client-server” system.

The initial prototype worked well when interfaced with a test
system consisting of four mortar rounds. However, the program’s
responsiveness and usability decreased as the number of fuze
clients increased. This is especially problematic as the ADIM mor-
tar chamber has a 20-round capacity. The responsiveness issue
is particularly troubling because on the battlefield, every second
counts. This work attempts to tackle this problem by redesigning
the ROAMS system to support efficient remote fuze-setting.

This paper analyzes a redesign of the ROAMS magServer-
client system using the Message Passing Interface (MPI) [3] and
the C language. In order to test the scalability of the ROAMS
system, a cluster of 21 Raspberry Pis was built to simulate the
full ADIM system. We measure the performance of the MPI
system and compare it to the client-server system implemented
in Python. The MPI implementation results in a time reduction
of up to 90 percent of the original Python prototype, suggesting
that MPI is a promising technique to improve the speed of remote
fuze setting.

The rest of the paper is organized as follows. Section II gives
a detailed over view of the original ROAMS prototype, its key
limitation, and motivations to transition to C and MPI. Section III
describes the redesign of ROAMS to use MPI. Finally, prelimi-
nary results and conclusions are presented in Sections IV and V
respectively.

Figure 1: Overview of ROAMS system.

2. Overview of the ROAMS System
Figure 1 illustrates a simplified network layout of the

ROAMS system prototype. A Raspberry Pi is used to
simulate the microprocessor needed in each smart-round,
and a central Raspberry Pi acts as the magazine server (or
magServer). An Android tablet serves as an interface for
soldiers to control the magServer and, by extension, the

CrossTalk—November/December 2015 13

FUSING IT & REAL-TIME TACTICAL

mortar rounds themselves. The magServer as originally designed
has four jobs:	

•	Establish connection with every mortar and store its
	 state information.

•	Establish connection with the tablet and provide an
	 On-Demand list of mortars at its disposal.

•	Accept and relay all commands from the user to
	 the rounds.

•	Provide setting verification on all rounds in its control.

The Android tablet accomplishes this by displaying the list of
available mortar rounds for the user to select, and allows them to
change the fuze setting and or GPS data. The magServer begins
by setting up both a wired and wireless network interface. The
server then connects to the user’s Android interface device on
the wired interface, and listens for mortar round connections on
the wireless interface. When a mortar round is connected, the
magServer adds it to the inventory and transmits to the tablet an
updated list of mortar rounds. The server maintains a list of all
rounds in its magazine, as well as their specific attributes (such
as fuze setting and GPS coordinates).

The ROAMS remote fuze communication system was set up
using a series of sockets following a classic server-client rela-
tionship. The magServer acts as the focal point between the cli-
ent fuzes and the user interface. Whenever the server starts up,
it runs a single-threaded Python script that accepts connections
from the fuzes and the user interface. It then maintains a list of
fuzes—with their relevant information—dynamically and sends
update information out from the user interface. It also keeps the
user interface updated on any change in fuze settings.

Python Limitations
A key limitation of the original ROAMS system was its use of

Python to implement client-server threading. While a very popular
language, Python is a very inefficient choice for multithreaded
applications. This was highlighted in the late 2000’s by David
Beazley, who implicated Python’s Global Interpreter Lock (GIL)
as the source of its performance issues [4]. The GIL essentially
forces Python programs to only run one thread at a time, even if
a Python program is multi-threaded. This design decision exists
to enforce memory safety in the Python interpreter.

Consequently, a program running two Python threads can run
twice as slow as a Python program running a single thread. The
Python community has resisted calls to remove the GIL, as doing
so will reduce the safety of Python applications and reduce the
speed of single threaded programs. All of these reasons suggest
that Python is (for the immediate) a poor choice for creating a
multi-threaded application.

Transition to C and MPI
These limitations forced the design team to explore other

languages to better support multi-threading. The team settled on
the C language, mainly due its native support for multi-threading,
which is executed at the operating system level. While the onus
for enforcing memory and thread-safety rests solely on the
shoulders of the developer, C allows for more opportunities to
enhance performance.

While C fully supports network socket programming over TCP/
IP, the Message Passing Interface (MPI) library is used to enable
the magServer to communicate with the individual clients. MPI is
a standard in the high performance computing world, and is de-
signed to enable efficient and scalable communication between
multiple computers. The MPI library also has support for asyn-
chronous communication and collective communication opera-
tions, which can drastically increase the rate at which messages
are sent and received.

3. Methods
Figure 2 shows the custom 21-node Raspberry Pi B+ cluster

built to simulate the full ADIM system. Each node in this cluster
requires a USB wireless adaptor to both broadcast and receive
wireless signals, similar to the intended implementation. Each
node uses a 4GB microSD card to run the Linux operating sys-
tem and store magServer and smart-round client program files.
The cluster also requires a power supply to replicate the HMMWV
battery for each node.

A custom power supply was built for the project that provides
surge protection, voltage conversion, and eliminates the need for
21 separate power cords. The custom case design enables the
entire system to be passively cooled. The magServer node also
requires a special wireless adapter to host the wireless network.
Cluster and implementation details are discussed in detail below.

Cluster Configuration Details
The master Raspberry Pi node acts as a wireless access point

(WAP) and dynamic host configuration protocol (DHCP) server
for the project using instructions procured from the Raspberry Pi
HQ website [5]. The South Hampton Raspberry Pi cluster tutorial
[6] was a starting point to set up MPI on our cluster.

This application uses a custom DHCP server to assign IP
addresses to each node in the cluster, requiring some additional
configurations not outlined in the South Hampton tutorial. For
example, the SSH configuration file was modified to disable re-
verse DNS lookup. Next, a Python script was added to send each
worker’s IP address to the magServer when the system initially
boots up. This enables the magServer to automatically know at
start-up the number of available worker nodes (active rounds) and
their respective IP addresses.

Figure 2: Final Raspberry Pi cluster.

14 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

ROAMS MPI Implementation
In the context of ROAMS, the magServer can be thought of

a “master” node that passes messages to a series of “worker”
nodes (smart rounds) in the ADIM magazine. Upon start up, the
magServer has a list of the available “active” rounds in the maga-
zine. Each message sent from the magServer to a particular smart
round contains a set of commands to set its fuze. Each worker,
upon receiving its message and setting its fuze, sends back a
confirmation message.

For the scope of this paper, the design uses point-to-point com-
municators MPI_Send and MPI_Recv to implement the communi-
cation model. The MPI_Send function enables the magServer to
send a message to a worker node. The MPI_Recv function allows
a worker node to receive a message from the magServer. Thus, a
pair of MPI_Send/MPI_Recv communicators is necessary each
time a message is sent from the magServer to the worker nodes,
or vice versa.

supported fuze clients is increased from one to twenty, in incre-
ments of five. We measure the percentage of run-time reduction
by use the equation (1-M/P)×100 where M and P are the execu-
tion times of the MPI and Python implementations, respectively.

Sending a Message to Fuze Clients
Figure 3 shows the average time it takes each implementation

to send fuze data to all the clients. In this particular execution
stage, the Python implementation performs moderately well, with
execution time ranging from 0.00267 seconds on a single fuze
to 3.37702 seconds on twenty fuzes. While the MPI implementa-
tion also experiences a modest increase in running time, it takes
0.03241 on a single fuze and 0.62245 seconds on twenty, requir-
ing less than a second to compute regardless of the number of
fuzes. This represents an 81.56 percent reduction in time for
transmitting messages to the full twenty rounds.

Receiving Confirmation from Fuze Clients
Figure 4 depicts the average time it takes the Python version

to receive confirmation from all the fuze clients compared to the
MPI implantation. When dealing with five fuzes, it takes 1.529
seconds for the Python implementation to receive confirmation.
However, as the number of fuzes increases to fifteen, the Python
threaded version takes on average 5.677 seconds. At twenty cli-
ents, it takes the Python implementation 8.337 seconds on aver-
age. In contrast, the MPI implementation takes 0.05375 seconds
on average to receive confirmation from a single fuze, 0.74295
seconds for fifteen fuzes, and 0.83812 seconds for twenty. This
corresponds to reduction in running time of 89.95 percent.
5. Conclusion

Figure 4: Time required to receive confirmation from fuzes.

4. Results
	 The scalability of MPI compared to the Python client-

server program is benchmarked by measuring two stages of
execution: the time taken to send a message indicating a change
in one or more clients’ status (Figure 3), and the time taken to
receive acknowledgement from the fuze clients that the change
was made and implemented (Figure 4).

These experiments do not consider the time needed to com-
municate to the user interface, as scaling efficiency issues are not
applicable in this context. The experiments also don’t reflect the
amount of time needed to acquire fuze clients during operation.
This is due to the current system’s inability to properly simulate
when a mortar is fired. The conclusion section includes a discus-
sion detailing what a proper future simulation of the process will
look like, and some hypotheses on running time.

For each execution stage, the running time of the threaded
Python implementation is compared against the MPI version. To
illustrate scalability, the run time is measured as the number of

Figure 3: Time spent sending orders to new fuzes.

	 The experimental results clearly show the benefit of
using the MPI implementation for remotely setting fuze clients on
ROAMS. Using MPI allows ROAMS to reduce the time necessary
to acquire fuze information by up to 89.95 percent, correspond-
ing to a speed up of 10.54. In all execution stages, it takes MPI
less than a second to perform the desired task, regardless of the
number of fuzes. In contrast, the Python implementation can take
up to ten seconds.

While the difference may seem marginal on the surface, every

CrossTalk—November/December 2015 15

FUSING IT & REAL-TIME TACTICAL

second counts on the battlefield. The current ADIM system has a
fire rate of 30 rounds per minute, or a round every two seconds.
Therefore, the reductions from 3.3 and 8.3 seconds to less than a
second correspond to possibly two to four more rounds directed
at the enemy. When a soldier is in contact with the enemy in a
firefight, two to four mortar rounds could be the difference be-
tween achieving the objective and failing to suppress the enemy.
In order for the ADIM to be useful, a soldier needs to know as
soon as possible that the changes were received and his equip-
ment is ready for use so he can continue to react to the ever
changing battlefield.

These results also indicate the superiority of using MPI to
achieve system scalability. MPI is a long-standing standard for a
reason. The experimental results clearly show that it is faster than
standard Python sockets for broadcasting and receiving messag-
es from many nodes. We encourage other developers designing
server-client systems to explore MPI as a potential library to im-
prove performance. Future work will explore other MPI operations,
such as collective and asynchronous communication constructs,
in a further effort to improve performance in the ROAMs system.

Notably, the current experimentation does not include the
amount of time needed to maintain the list of active fuze clients.
As each round is fired from the chamber, it becomes “inactive.”
When a new mortar is inserted into the chamber, the round
becomes “active.” In both cases, the magServer needs to know
about the change of status in individual rounds to maintain an
accurate list of the mortars available at any given time.

Message passing can assist in keeping the magServer updated
as follows. Every time a mortar is fired, it sends a message to the
magServer indicating that it is no longer active. The magServer,
upon receiving the message, will need to remove the mortar’s
IP address from the list of “available” IPs. When a new mortar
is added to the chamber, it sends a message to the magServer
notifying that the round is active. Upon receiving the message, the
magServer adds the new IP address to the list of “available” IPs.
Regardless of whether a new round is “acquired” or “disabled/
fired”, the cost is a single send/receive operation plus the time
needed to update the list.

The preliminary results suggest that the time needed to send/
receive a single message using MPI takes between 0.03 and
0.05 seconds, a trivial amount. Since ADIM’s capacity is twenty
rounds, it is hypothesized that the time needed to update the list
is negligible. A thorough simulation of mortars firing and being
reloaded is needed to fully test this hypothesis. We plan to make
this the focus of our future work.

Acknowledgments/Disclaimer
	 We would like to thank the entire support staff at

USMA’s Electronic Support Group and Computer Support Group
for their hard work supplying us with hardware and troubleshoot-
ing software. We would especially like to thank Mr. Frank Black-
mon for assisting in the design of and 3D-printing the Raspberry
Pi’s cases, Mr. Bob McKay for designing, creating, and fixing the
Raspberry Pi’s power system, and Mr. Jim Beck for countless
hours spent troubleshooting the Raspberry Pi’s network and SSH
connections. The opinions expressed in this work are those of
the authors and do not reflect those of the U.S. Army or the U.S.
Military Academy.

Zachary Ramirez is a 2nd Lieutenant in the U.S.
Army, Transportation Corps. He graduated with his
B.S. in computer science from the United States
Military Academy in 2014. He completed the work
on this paper as part of an independent study
supervised by Dr. Matthews and MAJ Blaine. He
is currently stationed in the 916th Sustainment
Brigade at Ft. Irwin, CA. He was recently selected to
become part of the new Cyber Corps and will make
the transition in August 2016.

E-mail: zachary.j.ramirez3.mil@mail.mil

Raymond Blaine was commissioned a Signal Officer
and recently became a Cyber Officer. His assign-
ments include a variety of duty positions at Fort
Bragg, N. C. He also has served two tours in OIF and
one tour in OEF, as a Platoon Leader, Aide-de-Camp
to the Chief of Staff MNC-I, and as S6 for 2-508 PIR
respectively. He is an Assistant Professor at USMA.

E-mail: raymond.w.blaine.mil@mail.mil

Suzanne J. Matthews is an assistant professor of
computer science at the United States Military Acad-
emy, West Point. She received her Ph.D. in computer
science from Texas A&M University, and her M.S. and
B.S. in computer science from Rensselaer Poly-
technic Institute. Her honors include a Texas A&M
University Dissertation Fellowship, a Rensselaer
Master Teaching Fellowship, and memberships in the
Upsilon Pi Epsilon and Phi Kappi Phi honor societies.

E-mail: suzanne.matthews@usma.edu

ABOUT THE AUTHORS

REFERENCES

1.	 Kowal, Eric and Lopez, Ed. Revolutionary Mortar System to Boost Speed, Accuracy, Enhance
soldier Safety [Online]. Available: <http://www.army.mil/article/147037/Revolutionary_mor-
tar_system_to_boost_speed__accuracy__enhance_Soldier_safety/, 2015>.

2.	 Raspberry Pi Model B+ Data Sheet [Online]. Available: <https://www.adafruit.com/datasheets/
pi-specs.pdf >, 2014.

3.	 Gropp, William, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced features of the
message-passing interface. MIT press, 1999.

4.	 Beazley, David. Understanding the Python GIL [Online]. Available: <http://www.dabeaz.com/
python/UnderstandingGIL.pdf. 2010>.

5.	 How-To: Turn a Raspberry Pi into a WiFi Router [Online]. Available: <http://raspberrypihq.com/
how-to-turn-a-raspberry-pi-into-a-wifi-router/>

6.	 Cox, Simon . Steps to Make Raspberry Pi Supercomputer [Online]. Available: <http://www.
southampton.ac.uk/~sjc/raspberrypi/pi_supercomputer_southampton_web.pdf, 2013>

mailto:zachary.j.ramirez3.mil@mail.mil
mailto:raymond.w.blaine.mil@mail.mil
mailto:suzanne.matthews@usma.edu
http://www.army.mil/article/147037/Revolutionary_mor-tar_system_to_boost_speed__accuracy__enhance_Soldier_safety/
http://www.army.mil/article/147037/Revolutionary_mor-tar_system_to_boost_speed__accuracy__enhance_Soldier_safety/
http://www.army.mil/article/147037/Revolutionary_mor-tar_system_to_boost_speed__accuracy__enhance_Soldier_safety/
https://www.adafruit.com/datasheets/pi-specs.pdf
https://www.adafruit.com/datasheets/pi-specs.pdf
http://www.dabeaz.com/python/UnderstandingGIL.pdf.2010
http://www.dabeaz.com/python/UnderstandingGIL.pdf.2010
http://raspberrypihq.com/how-to-turn-a-raspberry-pi-into-a-wifi-router/
http://raspberrypihq.com/how-to-turn-a-raspberry-pi-into-a-wifi-router/
http://www.southampton.ac.uk/~sjc/raspberrypi/pi_supercomputer_southampton_web.pdf
http://www.southampton.ac.uk/~sjc/raspberrypi/pi_supercomputer_southampton_web.pdf

16 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

Introduction
The article delves into what data to store, where to store it,

and how to get it off the device. I will also get into the consid-
erations of power management in order to extend the battery
life of the storage system and ruggedizing the system so that
the data is reliable, as well as the different file system options
available.

Data Storage System Design
The design of a data storage system has several basic

features to consider…and some not so basic. The first question
is: What data is going to be stored? Followed by: Where will the
data be stored?

In our initial application, the data to store is information that
determines what an object is doing as it floated on the ocean’s
surface. To accomplish this, an inertial measurement unit (IMU)
is used to generate the data. It is important to consider other
input data sources, typically from various sensors. In this case,
having an accommodating platform that can receive analog
(via ADC) or digital data is important. For digital inputs, many
sensors are designed with widely used serial interfaces such as
serial peripheral interface (SPI) or inter-integrated circuit (I2C).
Including these serial interfaces in the data storage system
design is important to allow easier integration with a wide variety
of sensors.

In order to determine where to record the data, the storage
speed needs to be determined as well as the capacity for the
data. Along with these considerations, the facilities supported by
our microcontroller (MCU) are important to consider.

In this case, the MCU included a secure digital host controller
(SDHC) interface for SD/MMC/µSD cards. Therefore, the first
design uses an SD memory card for data storage. This offers
the ability to have removable media for data extraction, vary-
ing sizes (including large storage space) of storage capacity by
simply changing the card, and a compact size.

In a rugged environment using removable media may not be a
good idea because of the connector as a potential issue where
the card becomes dislodged. There is also the extra cost associ-
ated with a connector if price is the key concern.

Massive Storage
in a Miniature
(Embedded) Package
Anthony Massa, MNW Tech

Abstract. Data, data is everywhere…and we want ways to get it, store it, trans-
mit it, and mine it. Many different options exist from solid state drives to embed-
ded data recorders. This article takes a look at the fundamentals of an embedded
data storage system, the thoughts behind the design decisions and different
features to incorporate in an embedded data storage system.

In rugged environments, soldered flash might be a better
alternative such as serial or NAND flash. Considerations of
storage capacity and speed still need to be understood in order
to ensure the system specifications are met by the hardware.
There is also the consideration of how the data is stored to
these “hardwired” alternatives where a file system may not
accommodate soldered in flash. In that case, a custom driver
needs to be developed. Other concerns with soldered flash are
wear-leveling and bad-block handling.

Retrieving the Data
After determining the data storage issues, next is to design

how the data is extracted from the storage system. Several
options exist depending on how the data storage system is
going to be deployed. If the system is going to be returned to
a lab environment for data extraction and a removable memory
card (such as the previously mentioned microSD card is used),
most PCs come with interfaces that can accept these types of
memory cards directly. This type of interface provides a level of
data integrity by reducing the chances of corrupted data during
the transfer.

Another option if the system is returned to a lab environment,
a serial port such as a UART could be used to send the data for
post processing. Easily interfaces to PCs (albeit typically with a
USB-to-serial cable) and can include common serial protocols
X, Y, or ZMODEM to add a layer of data integrity with packet
checksums.

If the system cannot be returned, but has network access,
such as an Ethernet connection, then the data can be retrieved
using a standard network protocol. This requires the data stor-
age system to incorporate a network stack in order to be able
to communicate over the network. A protocol such as the file
transfer protocol (FTP) can be used to allow the data to be ac-
cessed remotely.

If a wired connection is not possible, then a wireless con-
nection can be designed to get the data off the unit. Wireless
connectivity offers a lot of flexibility as far as data removal goes.
Several off-the-shelf modules exist that provide the commonly
supported (Wi-Fi, Zigbee, Bluetooth) and low power protocols
in use today. There are some transmission range concerns
depending on how remote the unit is deployed but these types
of wireless protocols offer low power capabilities for remote
data extraction. Other wireless options are also available includ-
ing various modem modules such as cellular or satellite. There
are also power as well as added cost concerns not only for the
modules themselves but also the cost to use the satellite or cel-
lular network to retrieve the data.

Power Management
A key concern for remote systems is power management.

If a system is battery powered and needs to last for months
or even years without intervention, one of the biggest design
considerations is power management. Many MCUs nowadays
have several different sleep modes which conserve power. The
power management module can then be designed so that the
system only wakes up when it is time to collect data samples

CrossTalk—November/December 2015 17

FUSING IT & REAL-TIME TACTICAL

	

	
	
	
	

Low	Power	MCU	

Data	Storage

Sensor
Sensor
Sensor(s)

Battery	and	
Power	

Management

Data	Link	
Radio

GPS Data	
Extraction	
Interface(s)

Figure 1. Data storage system block diagram.

from the sensors or time to transmit the data. If a time base is
needed to synchronize when data is sampled or transmitted, a
GPS module can be included in the system to synchronize time
across several units in the network as well as providing location
information. A real-time clock (RTC, which can be a module in
many MCUs out on the market today or as a standalone chip)
can also be used, but needs to be programmed initially with the
correct date and time value.

Figure 2 shows the MNW Tech SD card-based data storage
system. This system provides a serial interface to extract the
data from the system, as well as the capability to remove the SD
card directly.

Data Security
In particular applications it may be necessary to secure the

data stored to a device for example in medical applications
where patient information must be secured. Data security can
be a major concern in systems where the storage device is
removable and can be tampered with by unknown sources.
In these cases the data is encrypted before storing it to the
memory device. Various security algorithms exist that provide
the necessary security including many open source solutions. In
many cases, the microcontroller can assist in the data security
by providing a cryptographic acceleration unit. For example,
some versions of the Freescale Kinetis ARM-based microcon-
troller include such a cryptographic accelerator that assists in
many different popular cryptographic algorithms including DES,
3DES, AES, MD5, SHA-1, and SHA-256.

System Configuration
In order to develop a general design and product for several

different applications, runtime system configuration is needed.
Therefore, the data storage system is able to adapt to the
specific needs of a particular customer by allowing the customer
to select various configuration parameters such as how often
the data is stored or data sampling rate, what data is overwritten
when the limit is reached, when a new data file is started, and
even what data is stored in the file.

There are several different options for runtime system con-
figuration such as a loadable text file which can be contained
on the memory card, if present, or downloaded serially. The user
can then customize the various data storage parameters by
hand-editing the system configuration file. Once deployed, it can
be difficult to modify the configuration file unless remote ac-
cess, such as via wireless download, is available on the system.

Another method which is more elegant is a web interface
providing the configuration information. In this case, a network
stack and web server need to be incorporated into the data stor-
age system and the customized web page interface needs to be
developed. Using a web interface is common on many products
today for example on nearly all routers. The user is then able to
select the various configuration parameters from drop down lists
and radio buttons to customize the operation of the data storage
system.

File System
To use a file system, or not…that is a question. For certain,

18 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

more basic data storage applications, a file system can be un-
necessary and instead directly writing to the storage module can
be used. For example, if a serial flash is used to store the data
gathered, only the serial flash driver need be developed and
the data can be written directly to the device at the specified ad-
dresses. This eliminates layers of complexity with a file system
and file management.

In other applications, a file system provides the additional fea-
tures and capabilities that are necessary. A file system provides
help with numerous features including organizing data through
the usage of files, timestamp on file data, as well as wear-level-
ing and bad block management.

Most memory devices have a finite number of program-erase
cycles that they are specified to meet. In order to extend the
life of the storage device, different memory sectors are used to
store the data, essentially mapping the data to different sectors
rather than repeatedly storing data to the same sector location
in the device. This technique is called wear-leveling. Another
technique called bad block management verifies data written to
the storage device and keeps track of sectors that are damaged
and therefore unusable to avoid data loss.

Several open source file systems are available for use. One
popular file system used is FatFS (http://elm-chan.org/fsw/
ff/00index_e.html). FatFS is ideal for many embedded sys-
tems because it has a small footprint, is written it C making
the source code platform independent, and has a very modular
design allowing different configuration options. Many of the
basic API calls are provided such as open, close, read, write, and
mount.

Conclusion
Many different applications exist that require data storage

systems from collecting the body’s physiological characteris-
tics data to monitoring the temperature of a remote location to
tracking the path of an unmanned vehicle. This article has pre-
sented a number of key design considerations for an embedded
data storage system along with possible solutions based on the
type of application in which the data storage system is deployed.

Anthony Massa is the Director of Soft-
ware Engineering at MNW Tech <https://
www.mnwtech.com> in San Diego, CA.
Anthony has over 20 years of experience
in all aspects of engineering, focusing on
embedded systems and has worked on
several successful products. He has taught
courses on embedded software devel-
opment and written extensively on the
subject including the books Programming
Embedded Systems: with C and GNU De-
velopment Tools (O’Reilly) and Embedded
Software Development with eCos (Pren-
tice Hall PTR) as well as several articles.

Phone:619-252-7010
E-mail: amassa@san.rr.com

ABOUT THE AUTHOR

Figure 2. MNW Tech SD card-based data storage system.

http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
https://www.mnwtech.com
https://www.mnwtech.com
mailto:amassa@san.rr.com

CrossTalk—November/December 2015 19

FUSING IT & REAL-TIME TACTICAL

Our story starts with an engineer that sees an opportunity
to help his colleagues with work/life balance by allowing them
to work from home easier with a thin client while tending to a
sick child or watching a plumber fix their sink. This led to the
idea, well if it works over the internet locally, why shouldn’t it
work internationally? Well after a long struggle with IT, firewall
rules were created and properly tuned to allow the thin clients
to exist inside our walls but not necessarily networked internally
to maintain security. Now instead of planning a trip, booking
tickets, travelling, adjusting to a new time zone, we can sit at
our own desks, make a couple phone calls and connect in to
another network. This even allows access to the development
and integration labs allowing more efficient debugging with
actual live site data.

Can software development be considered tactical? Does the
development have an objective, or at least those developing it?
Is there a schedule the software development needs to meet?
Can a jointly developed software code base between two com-
panies happen in “real time?” Perhaps not completely, however
when the code base affects air traffic control and budgets and
schedules are tight, it may be closer to those (real time and
tactical) than not. When this program started in the very early
1990’s the concept of a shared code base that could be devel-
oped by both parties in near real time was not even a thought.
The best solution at the time was for customer engineers to
travel to the contractor’s site for initial requirements develop-
ment and software architecture. Then over time software source
code and executables were delivered on tape by hand. Once
the system was accepted by the customer and the software
warrantee period expired, then all software development moved
to the customer’s site. This is as far from real time tactical as we
get in this article.

About a decade later this software development relation-
ship took a big step forward. With both sides using what is now

International Partners with Multi-Site
Thin Client Interconnectivity
Brendan Conboy, Raytheon

Abstract. Do you remember when maintaining a code base with a foreign cus-
tomer with development and test in both countries meant costly travel, restless
nights due to hotel beds and time changes? Well we found a partial solution to
this. Imagine being able to work on not only the code base, but virtually in the lab
of your foreign customer without having to get on a plane, bus or ship, and enjoy-
ing the comfort of your own bed at night. With thin client and VPN technology we
were able to save on time and travel costs and be able to more tightly integrate
software and system changes. Now we still have language and culture boundar-
ies, but those are out of scope with this article. With the ever evolving virtualiza-
tion technologies the possibilities are multiplying daily.

IBM’s ClearCase software configuration management software,
a multi-site relationship was established for a follow on contract
and system upgrade. Code updates (what IBM calls synchroni-
zation [synch] packets) were encrypted using Gnu Privacy Guard
(GPG) software and then exchanged using a now retired File
Transfer Protocol (FTP) dropbox. These packets were eventually
exchanged every week day via cron tasks on both sides. (Timing
was an interesting adventure due to differing time zones and
daylight saving time schedules) Now that the code base is syn-
chronized in near real time, what about human communication.
Well that is a little harder without a common language; at least
the code was all in C. Even though both sides spoke English
communication had troubles at times and still a lot of travel was
required to either truly test or truly understand new features
or integration issues, especially those “you have to see this to
believe it…” kind of problems.

Now to introduce the thin client part of the story. The custom-
er site had migrated to a thin client infrastructure for software
development. This meant thin clients on developer’s desks as
well as in the lab for integration and debugging. By default, the
thin clients used broadcast traffic to find a server and provide a
“window” onto the network. What worked incredibly well as the
“window” the developer had at their desk was the same view in
the lab. Now take that a little further and consider the situation
where the developer is at home either due an appointment or
a sick spouse or child. Wouldn’t it be great to have that same
“window” from home? This would help the developer save valu-
able vacation time and maintain schedule for the company. So
through the use of company supplied SecurID tokens, a corpo-
rate VPN concentrator and a version of the thin client’s firmware
this solution was realized. This network plumbing provides the
necessary infrastructure for our ultimate use of thin clients for
near real-time development and communication between the
two companies.

Both companies were used to the travel and associated
paperwork and business went on as usual. Now not everyone
has the same schedule nor is available to travel any time or for
any length of time. Also in addition to software development the
customer started leveraging off the contractor’s knowledge of
Unix, networking, and development environment infrastructure.
This knowledge is best leveraged if one was located at the
customer site. Since that wasn’t a possibility another solution
had to arise, right? This led to the idea “well if the thin clients
can connect over the internet domestically, why shouldn’t it be
able to connect internationally?” One huge difference was that
customer’s employees already had a SecurID token to use.
How do we issue tokens to foreign contractors? Also is it worth
opening this development network up to the world; the develop-
ment network that affects Air Traffic Control?

20 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

So from manual hand carrying media on planes and sleep-
ing in hotels to staying home and getting to see the kids’ sports
games. We have come a long way in improving not only the
speed and agility of our shared software development program.
Not only saving schedule and travel expenses, but also helping
balance out employees’ lives. Will this work in every situation?
You may be surprised. I was a part of it and cannot believe what
we were able to do with as little effort as we needed.

Disclaimer:
Copyright © 2015 Raytheon Company. All rights reserved.

Now the customer had some work to do. They had to figure
out how to allow this access and still maintain its own security.
So extra interfaces were added off the thin client servers and
connected to a special VLAN. This allows not only special rules
to be applied to these thin clients but also an easy way to seg-
regate or disconnect just those thin clients coming from outside
the customer’s site. This VLAN runs through the customer’s
intranet bound for a VPN concentrator off their firewall. Then
a single VPN account for the contractor was created that is
shared and linked to a single RSA token that is carried by the
“on call” technicians at the customer site. The process for the
contractor to connect was to power on the thin client, enter the
shared username and PIN, then call the “on call” technician to
get the token output. This provides a simple way to connect and
preserves security for the customer, as they are the final gate to
access. This was later expanded to a secondary shared account,
PIN and token that is held by the customer’s network support
center that operates 24/7 to better accommodate the time dif-
ferences between the customer and contractor.

At the contractor site an isolated DMZ VLAN off the corpo-
rate firewall was created to house these thin clients. Since there
is no permanent storage (besides some flash memory for the
basic configuration of the device itself) in the thin client, security
was a lot easier to maintain. Since nowadays VLANS can be
extended to where ever one needs them. Thin clients were stra-
tegically deployed to the contractor’s lab, users’ desks and even
common areas to accommodate turnover and even customer
visits. Even customer visitors take for granted having their own
desktop when they were at the contractor’s site.

Now instead of planning a trip, booking tickets, travelling,
adjusting to a new time zone, the contractor engineers can sit at
their own desks, make a couple phone calls and connect in to
the customer’s network. This even allows access to the develop-
ment and integration labs allowing for more efficient debugging
with actual live site data. This was made available with the intro-
duction and advancements in virtual frame buffer technologies
(VNC and variants). Now while still at the contractor site one
can log into the various test strings (even book the test strings
like a customer employee) load them with your software and
see the output, even interact with them, with live site data not
available at the contractor’s site. This is an incredible advance-
ment since the customer site has test strings that emulate the
depth and breadth of the fielded systems and includes actual
live data feeds and other data inputs. This is a stark contrast
to the contractor’s site which has a bare bones system with a
minimal subset of the equipment and only test data generators
that simulate the live site data.

Brendan Conboy is a Unix systems
administrator at Raytheon Company in
Marlborough, MA. He supports many pro-
grams and wears even more hats. Brendan
joined Raytheon 1997 most of that time
in Marlborough, but a couple years in St.
Petersburg, FL. He is mostly supporting Air
Traffic Control programs specializing in OS
automation.
Special thanks to Einar Skagen of Avinor,
AS in Norway who was the real architect
and drive behind this change.

E-mail:
Brendan_E_Conboy@raytheon.com

ABOUT THE AUTHOR

Now instead of planning a trip, booking tickets, travelling, adjusting to a new time zone, the
contractor engineers can sit at their own desks, make a couple phone calls and connect in
to the customer’s network.

“ “

mailto:Brendan_E_Conboy@raytheon.com

CrossTalk—November/December 2015 21

FUSING IT & REAL-TIME TACTICAL

Introduction
The quality of a computer system is a combination of several

of its properties. For dependable and regulated systems such
properties as reliability and safety used to be the primary drivers
of quality. Currently, with increasing systems interconnectivity, two
additional major properties come into play: security and privacy.

As early as 2006, a study of Common Vulnerabilities and
Exposures in software design between 2002 and 2004 revealed
a total of “3,595 security bugs from all corners of the software
industry [1].” This study demonstrated a wide range of security,
privacy, and reliability problems that may affect the overall quality
of the software products.

Unfortunately, today’s modern applications due to their increas-
ing interconnectivity, are even in greater risk of being exposed to
threats than systems involved in the 2006 study. In newer reports,
whether by academia [2, 3, 4], government [5] or industry [6], the
numbers are even more alarming. Tight development deadlines
and the application of rapid design practices often open the pos-
sibility of adding flaws to these critical components of a software
application.

To minimize, and possibly eliminate, potential threats to security,
reliability, and privacy of the product, it is important for develop-
ment teams to create threat models to determine the highest
threat levels and risks involved in all aspects of the software
being developed. This essentially requires a formal security-based
analysis to predict and mitigate possible attacks on the software.

In the past, aviation systems were effectively protected by
rigorous separation from any external access. Proliferation of

Threat Modeling
for Aviation
Computer Security
Abraham O. Baquero, SMRT Software Corporation
Andrew J. Kornecki, Embry Riddle Aeronautical University
Janusz Zalewski, Florida Gulf Coast University

Abstract. The safety of aircraft cannot be analyzed anymore based only on
potential hazards and failures. Due to their increasing interconnectivity, mod-
ern computer systems are exposed to a variety of security threats. Additionally,
complexity of the system may be a source of vulnerabilities opening the system
to malicious actions with ultimate impact on safety. Threat Modeling is the tech-
nique that assists software engineers to identify and document potential security
threats associated with a software product, providing development teams a sys-
tematic way of discovering strengths and weaknesses in their software applica-
tions. Microsoft’s SDL Threat Modeling Tool offers automated analysis of security
threats of systems that can be represented using data flow diagrams. The article
discusses issues of security in aviation and presents a case study of a realistic
cyber-physical system to introduce tool-supported threat modeling method which
can be used for unmanned aerial systems security analyses.

modern interfaces and excessive access to the Internet caused
that safety of the aircraft cannot be analyzed anymore based only
on potential hazards and failures. One needs to consider intended
malicious actions that pose security threats with ultimate impact
on safety. Therefore, there is a need for guidance identifying
methods, techniques, and considerations for securing airworthi-
ness during the aircraft development life cycle from project initia-
tion until the Aircraft Type Certificate is issued.

The methods, techniques, and considerations should address
the acceptability of the airworthiness security risk and the design
and verification of the airworthiness security attributes as related
to system safety. From a perspective of the “C-I-A triad” (Confi-
dentiality – Integrity – Availability), the interest of the guidance are
issues of integrity and availability due to their potential impact on
safety.

Practices for airworthiness security are undergoing evolution
and refinement as new features are deployed and the security
threats advance. One of the elements of the airworthiness securi-
ty process is threat modeling. It is thus critical to explore methods
that would facilitate analysis and provide tools to conduct threat
modeling.

The objective of this article is to present the issues of secu-
rity in aviation and to introduce threat modeling as a method to
identify security threats. The next sections provide an overview
of basic issues and concepts of aviation security, followed by a
description of a case study to which threat modeling is applied.

Aviation Systems Security Guidelines
A well-established guidance for aviation software aspects of

system certification DO-178C [7], in section 2.3.3, defines the
software level matching the system Development Assurance Lev-
els (DAL) defined earlier in section 5.2.1 of ARP4754A “Guide-
lines for Development of Civil Aircraft and Systems [8].” Software
level is pre-determined by the system safety assessment as
described in ARP-4761 [9].

Neither of existing aircraft system safety guidance documents
does specifically address airborne network and data security is-
sues, which results in non-standardized and potentially inequitable
agreements between the various applicants and the regulatory
agencies on an acceptable process and means of compliance for
ensuring safe, secure and efficient aircraft network design and
operations.

Since historically the aircraft systems were deemed protected
from external access, DO-178C focus is entirely on safety,
neglecting any reference to security. Due to increasing intercon-
nectivity of modern systems and proliferation of unmanned aerial
systems, the issues of security became more important. The
RTCA and EUROCAE established a new committee SC216/
WG71 dedicated to aviation security. In 2014 the committee final-
ized updated version of “Airworthiness Security Process Specifi-
cation” DO-326A/ED202A [10] and a new document “Airworthi-
ness Security Methods and Considerations” DO-356/ED203
dedicated to aviation systems security (available at the RTCA site
www.rtca.org). The former is a development process standard that
the developers must adhere to show that technical requirements
are sufficient and they are implemented correctly.

The above mentioned RTCA documents, address the informa-

http://www.rtca.org

22 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

tion security of airborne systems and related ground systems.
They are applicable also to unmanned aircraft which heavily
depend on communication for their safe operations. The following
discussion is conducted in compliance with current versions of
the above documents.

Aviation Systems Security Concepts
We define an asset as a physical or logical resource of the

system (functions, subsystems, interfaces, data, processes, and
other items valuable to system’s operation) which may be subject
to attack. In the aviation world, examples of assets include flight
deck, flight control, maintenance, navigation databases, navigation
services, aircraft software and hardware, etc. The changes in the
condition of the assets caused by the attack may have impact on
safety. These changed conditions are the threat conditions.

Figure 1 presents a useful high-level model explaining the
conceptual relationship between safety and security [11]. Given
a system composed of a controller and a controlled process, dis-
turbance in the environment may constitute a hazard to the con-
trolled process of the system operation. The controlled process,
on the other hand may be a source of system induced hazards to
the environment. Moreover, external conditions be it malevolent
attacks or interconnectivity problems can be treated as a threat to
the controller being the major system asset. Controller interfaces
constitute the potential attack surface and should be treated as
trust boundaries.

A security threat may result in a condition with an adverse ef-
fect on the system safety involving not only assets but also people
or processes – having an adverse effect on the aircraft and its
occupants. In conjunction with operating conditions, failure condi-
tions, and environmental conditions, such effect can be either
direct or consequential. Threat condition is similar to failure condi-
tion, except that the former results from malicious information
security attack, while the latter is essentially a hazard resulting
from system faults and non-malicious environmental events.

Fig.1. High-level model: controlled process – controller.

	

Threat condition can lead to exploiting vulnerabilities, where
vulnerability is identified as weakness in an information system,
security procedures, internal controls, or implementation that
could be exploited by a threat source [12]. Vulnerability can be
unintentionally triggered or intentionally exploited and result in a
violation of the system’s security policy.

Threat conditions, categorized as a loss of a security service for
an asset (e.g., integrity, availability, or confidentiality), would have
impact on safety. Therefore, the SC-216 committee guidance
[10] allows to apply the ARP4754A categorization to security. The
severity classification of an asset lists its threat conditions and the
severity of their impact. Under this assumption, severity of system
asset threat conditions can be classified into five categories (I to
V) from the highest “catastrophic consequences” leading to the
loss of the aircraft to the lowest “no safety effects.” Trustworthi-
ness level classifies the trustworthiness according to the impact
level of misuse of the assessment asset. The five levels indicate
how trustworthy it is to use or manage assets with safety impacts,
ranging from none (general) to catastrophic (special trust).

Considering both the severity of the asset misuse by the
population and the trustworthiness level, one can determine a
likelihood of the asset misuse by trustworthy population, ranging
from frequent (anticipated to occur routinely, for no effect and no
trust) to extremely improbable (not anticipated to occur, for critical
effects and special trust). The likelihood, together with the threat
scenario impact, constitutes the risk level matrix identifying ac-
ceptable or unacceptable risk.

The starting point in risk analysis is to establish the security
perimeter. The questions to be asked are:

•	 Who can access the system?
•	 How the system can be accessed?
•	 Are there any other means to access the system?
•	 What are specific elements of the system that can

	 be accessed?

Once the security perimeter is established, one needs to
identify the security environment. Here the questions to
be asked are:

•	 Who can attack?
•	 What can be attacked?
•	 What needs to be protected?

A response to these questions allows the analyst to identify the
specific assets to protect and the attack vectors. Threat modeling
is a useful technique to assist in such analyses, by addressing
questions similar to those stated above.

Threat Modeling
Threat modeling is the activity that assists software engineers

to identify and document potential security threats associ-
ated with a software product. It provides development teams a
systematic way of discovering strengths and weaknesses in their
software applications during the Security Design Lifecycle.

There are a couple of tools that can be used in this process
[13], PASTA [14], Trike [15], and Microsoft SDL. The latter tool
was selected, because at the time of this work it was the most
stable and best followed the software engineering principles. The
SDL Threat Modeling Tool offers automated analysis of security

CrossTalk—November/December 2015 23

FUSING IT & REAL-TIME TACTICAL

	
Fig.2. Robotic Application Case Study

threats to a system. It has been described in details elsewhere [1,
16], so here we present only an outline of the technique, referring
the interested readers to original publications.

The process starts with building a Data Flow Diagram (DFD)
model of the system under analysis. DFD’s are a well-established
technique used to visualize how the system processes data [17].
Critical in security modeling using DFD’s are trust boundaries on
paths between the system entities. As defined in the STRIDE
model [16, 18], a transition from one trust boundary to another
has to validate the following six threat types: Spoofing, Tamper-
ing, Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privileges. For example, in aviation environment,
spoofing may modify data such as flight plan or GPS data that
appears to be from a legitimate source caused by a protocol
weaknesses, compromised security data, or compromised ground
systems. Tampering uses digital connection to execute malicious
instructions on installed equipment. It typically exploits software
vulnerabilities such as buffer overflow. Denial of Service uses a
digital connection to disrupt service often via inherent protocol
features causing flooding or address resolution protocol poison-
ing. These threats may cause that a malicious content is inserted
into a legitimate part, software component, or database causing,
e.g., wrong flight approach or automated sabotage.

For an aircraft system, the security risk assessment shall focus
on threats and attacks that may affect safety of the aircraft. How-
ever, the complexity of most of the aircraft systems is such that it
is not easy to assess their safety. The used approach is to identify
the conditions that control the airworthiness of the aircraft, and to
classify the severity of the impact of all other events in terms of
these top-level conditions [8].

The safety analysis considers defects and failures, and a chain
of adverse events and conditions causing a potential safety haz-
ard. The effect of a hazard is a failure condition, with an adverse
effect on the aircraft, the crew, and the passengers. In a complex
system such as an aircraft, one can identify a top-level failure
condition composed of combination of item defects or failure
conditions along with other operational conditions or events.

A security attack also involves a chain of adverse events and
conditions. In this case, by analogy to failure condition, a threat
condition will occur through an information security attack. Such
system can be presented in form of data flows with appropriate
threat boundaries between the processes and thus allowing ap-
plying the proposed threat modeling technique.

The analysis would allow designers to apply security measures
(deterrent, preventive, detective, corrective, recovery) appropriate
to the identified threat. These measures, implemented on threat

boundaries when results of analyses identify the specific threats,
can be procedural (procedures, policies, and people) or technical
(functions, systems). A case study presented below demonstrates
the applicability of threat modeling to reveal some of the threat
conditions.

Case Study: System Description
Since modern avionics evolves rapidly towards Unmanned

Aerial Systems (UAS), with significant progress in research over
the recent years [19, 20, 21] and growing engagement of the
FAA [22], the Case Study selected for this project to model threat
conditions involves a Remote Robotic Device. It is an example
of a remotely controlled cyber-physical system, which can be
additionally disturbed by remote alteration (upload) of the control
software. A remote user (e.g., pilot, maintenance personnel)
can not only issue movement commands to a robotic arm via
client application, much like controlling a UAS, but also remotely
upload new applications (Figure 2). Additionally, video feedback
is provided to monitor the response of the robotic arm to the
remote commands imitating the sensor responses notifying about
the controlled device status. The device uses the TCP protocol
between the server and the client applications. However, another
means of connection can be used.

The five essential interfacing software components (applica-
tions) are:

•	 Robot Server – for receiving commands from the remote
		 user subsequently passed to the robotic arm servos.

•	 Camera Server – for sending video feedback to the
		 remote user.

•	 Remote Control – on the client computer allowing the
		 remote user to connect and send commands to the robotic
		 arm device while displaying video feedback.

•	 Update Server and Update Client – to allow a user update
		 the Robot Server software.

The communication between server and client applications
supports three essential functionalities:

•	 CONTROL: The Remote Control client connects to the
	 server using the server IP address and the specified port. The
	 Robot Server application listens for client requests on a speci	
	 fied port controlling robotic arm.

•	 VIDEO: A visual feedback from the Camera Server to the 	
	 Remote Control client application on its own specified port.

•	 UPDATE: Upon establishing a channel of communication 	
	 between Update Client and Update Server, the replacement 	
	 version of the software can be transmitted to the server.

24 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

From perspective of achieving application security, there are
two major objectives:

•	 How secure is the robot system operation?
•	 How secure is the process of software update?

In this paper, due to the limited space, we present only analysis
of the robot operational security (CONTROL and VIDEO func-
tionalities).

Case Study: System Operation Security Analysis
Given the server is up and running, the process of sending

a command to the robotic arm begins by client application first
establishing connection with the Camera Server to start the video
feedback. The client console is ready to send parameterized com-
mand data packets to the Robot Server application conforming
to the requirements of the Robot Server application API librar-
ies. The principle of communication is illustrated in a flowchart
presented in Figure 3.

The user enters movement commands using the Remote Con-
trol client console and the commands are sent to the server. The
Robot Server application receives the remote control command
parameters and passes them onto the robotic arm API libraries.
At this point, the robotic arm executes the commands and the
cycle ends. All this takes place while the user on the remote con-
trol console monitors the results via the video feedback provided
by the Camera Server application.

Two assets are connected during transmission of commands
from the client application to the server application; therefore,
there is always a possibility of potential threats from attackers
wanting to break into this process. Vulnerabilities in the flow of

	
Fig.3. Remote Control Client/Server Interaction

data from the client to the server and back can open the oppor-
tunity for information to be intercepted and modified. When the
client computer establishes a connection with the Robot Server
application, it must be ensured that the request sent to the server
is protected from malicious manipulation. The transmission of
commands from the client application has to pass through several
trust boundaries, as depicted in the data flow diagram (Figure 4,
produced using SDL Threat Modeling Tool).

According to the DFD, the first trust boundary (User Bound-
ary) is passed when the client computer connects to the Robot
Server to send movement commands to the robotic arm. Here is
where the data packets have to be verified for compliance. The
next trust boundary (Process Boundary) is between processes. At
this point the robot movement commands received by the Robot
Server from the client application have passed the compliance
verification and are passed onto the robotic arm library APIs for
execution. The final trust boundary (Machine Boundary) defines
a transition from the server computer to the physical robotic
arm controller responsible for activating the servos to satisfy the
movement commands.

Use of Threat Modeling Tool and Analysis
of Results

The Microsoft SDL Threat Modeling Tool is a tool to analyze
graphically threat models expressed using DFD diagrams. Once
the model is created, the tool can analyze it to identify threats and
allows the user to enter additional information describing the envi-
ronment and generate reports.

The Describe Environment feature of the tool helps orga-
nize information about the application environment such as the
conditions in which the software is deployed, external libraries
used by the application (software dependencies), Assumptions
of software usage such as how a feature of the software will be
used, External Security Notes, and Document Header Information,
such as component and product name which appears at the top
of all reports.

The tool can be connected to a bug tracking system which
allows the user to link a threat to a particular bug in the applica-
tion. The tool provides also prioritized recommendations for fuzz
testing, i.e., feeding of random information into the program inputs.
The results of analysis include the status of all the dataflow ele-
ments with their threats as found in the threat model. The SDL
creates a complete threat model report.

The critical feature of the tool is to display potential threats
generated by the DFD and to suggest applicable mitigation
strategies. Figure 5 shows the results of the analysis for the DFD
from Figure 4. By selecting the potential threat, the tool provides
a section where the developer can explain the impact of the
threat and select possible solution to mitigate it. A completion bar
is displayed when a solution to mitigate the threat is entered by
the user (see Figure 5). Additionally, each threat type is followed
by some useful suggestions on how to mitigate the threat suc-
cessfully (Figure 6).

As the result of applying the tool to the Case Study, two com-
mon threats have been identified to be the most critical and which

CrossTalk—November/December 2015 25

FUSING IT & REAL-TIME TACTICAL

Fig.4. Remote Robotic Control Data Flow
Diagram in SDL Threat Modeling Tool

Fig.5. SDL Potential Threats screen

	

	

need to be thoroughly evaluated for software safety and reliability:
Tampering and Denial of Service (DoS) attacks.

The first threat, tampering, covers areas where trust boundaries
are crossed by the application. It primarily comprises the interac-
tion established by the client computer and the server application
when a robot movement command is transmitted. Each of these
cross-boundary transitions of data are exposed to external enti-
ties that could potentially damage the data flow.

On one hand, there are automated processes capable of read-
ing and modifying bits of information carried in the data packets.
A preventive measure is to properly encrypt the information, e.g.,
by using a 256-bit Rijndael encryption algorithm, to make the
information stored in the data packets highly unlikely to decipher
by the attacker. Only the server side software with the correct
decryption key will effectively decrypt these packets. Such redun-
dant validation of information can be implemented by both, client
and server applications to verify the identity of the data to be sent
to the server as well as the data received from the client.

On the other hand, to prevent critical information from being
exposed to the wrong individuals and potential damage to the
system’s infrastructure, the authorized personnel need to follow
strict protocols to access mission-critical data.

Regarding the second threat, containing a DoS attack is a
challenging task since an attacker can continuously change or
spoof the location of the IP address from which the attack is
incoming so that the source of the attacking process cannot be
easily located. Usually, this type of threats are handled by attack-
detection tools at the hardware level using firewalls and switches
which can be configured to deny traffic from unknown or unusual
IP address. While it is unavoidable that respective ports have to
be open for the correct functionality of the software, one needs
to ensure that only limited number of ports is exposed at any
given time and that the software using these ports is up-to-date
responding only to valid client requests. This action effectively
prevents invalid requests from using valuable system resources.

26 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

general failure and threat conditions associated with each func-
tion. Subsequently, for all functions the severity of the loss of one
of the standard security attributes: Confidentiality, Integrity, and
Availability must be determined. Next, for all functions being con-
sidered, the severity of the impact of known or obvious attacks
including black-box attacks, man-in-the-middle attacks, replay
attacks, spoofing and introduction of coherently corrupted mes-
sages, and other tampering attacks must be taken into account.
The design features or failure conditions which would allow such
attacks to be applicable and to succeed are also vulnerabilities
that need to be thoughtfully analyzed.

A thorough analysis, following the data flow, allows the iden-
tification of vulnerabilities. One needs to consider all functions
with data flows or interfaces, physical or logical, to entities that
are in a different security domain with a lower security assurance
and identify the trust boundaries. Each such data flow represents
an inherent vulnerability that could be exploited by an attacker.
Special attention must be paid to network layers and non-critical
functions which may use operating system layers to manage criti-
cal functions. These layers are also exposed and are often based
on operating system modules (network stacks, file or memory
management, and thread or process management) that may not
have been designed for security.

In the context of the work of RTCA/EUROCAE SC-216 com-
mittee [10], the threat modeling approach allows developers to
address majority of system threats, identify appropriate mitiga-
tions on trust boundaries and thus contribute to the improvement
of system security. Particularly in aviation applications, threat
modeling allows developers to identify the trust boundaries in
the security architecture and subsequently apply appropriate
mitigation measures on these boundaries. Such approach sup-
ports a defense-in-depth concept and through improved security
positively affects the safety properties of the final system.

Acknowledgment
Janusz Zalewski would like to thank Steve Drager of Air Force

Research Lab in Rome, New York, for inspiring discussions during
a Summer Fellowship, which generated the idea for this project.

Conclusion
The use of the SDL Threat Modeling Tool to analyze the

Remote Robotic Device infrastructure has proven to be a valuable
aid to the early detection and effective prevention of potentially
serious flaws in the core of a cyber-physical system with the
functionality applicable for computer-intensive aviation system.
The presented approach can be used in evaluation of threats for
more complex systems as encountered in the aviation industry.

For aircraft system security analysis we start with identifying
all functions being considered, determining the severity of the

Fig. 6. SDL Potential Threat and Mitigation screen
	

http://www.dhs.gov/cybercareers
http://www.dhs.gov
http://www.usajobs.gov

CrossTalk—November/December 2015 27

FUSING IT & REAL-TIME TACTICAL

Abraham O. Baquero, B.Sc. in Computer Science, is the Chief Technology Officer and one of the founders of SMRT Software
Corporation. His expertise includes software piracy prevention, software licensing and intellectual protection. He held the position of
Lead Software Architect designing and implementing e-commerce software platforms. His responsibility was security, availability and
stability of the financial processes. Most recently he engaged in analysis of security of cyber- physical systems in cooperation with
Florida Gulf Coast University.

422 Wekiva Rapids Dr., Altamonte Springs, FL, 32714
Phone: 239-645-6831 E-mail: abebaquero@gmail.com

Andrew J. Kornecki, Ph.D. ‘74, MSEE ‘70, is a professor of software engineering with interest in safety critical software. He was
engaged in activities of the Society for Computer Simulation, IFAC Automation TC, the National Academy of Sciences, and the
RTCA committees dedicated to aviation software certification. He cooperated with aviation and medical industries and contributed to
real-time safety critical software training for the FAA Certification Services. He worked on several FAA contracts related to airborne
software and hardware certification.

Electrical, Computer, Software, and System Engineering Department, Embry Riddle Aeronautical University
600 S. Clyde Morris Blvd., Daytona Beach, FL 32114
Phone: 386-226-6455 E-mail: kornecka@erau.edu

Janusz Zalewski, Ph.D. 1979, MSEE 1973, is a professor of software engineering with interest in safety and security of embedded
and cyber-physical systems and engineering education. He worked for nuclear research institutions, including Lawrence Livermore
Laboratory, and consulted for industry, including Lockheed Martin, Harris, and Boeing. He served as a chairman of the IFIP WG
5.4 on Industrial Software Quality and spent several summers at Air Force Research Labs, studying trustworthiness and security of
cyber-physical systems.

Department of Software Engineering, Florida Gulf Coast University, 10501 FGCU Blvd, Ft. Myers, FL 33965
Phone: 239-590-7317 E-mail: zalewski@fgcu.edu

ABOUT THE AUTHORS

REFERENCES
1.	 M. Howard, S. Lipner, The Security Development Lifecycle, Microsoft Press, Red-

mond, Wash., 2006.
2.	 P. Meunier, Classes of Vulnerabilities and Attacks, In: Wiley Handbook of Science

and Technology for Homeland Security, J.G. Voeller (Ed.), John Wiley and Sons,
New York, 2010.

3.	 R.A. Gandhi, H. Siy, and Y. Wu, Studying Software Vulnerabilities, CrossTalk: The
Journal of Defense Software Engineering, Vol. 23, No. 5, pp. 16-20, September/
October 2010.

4.	 L. Bilge and T. Dumitras, Before We Knew It: An Empirical Study of Zero-Day
Attacks in the Real World. Proc. CCS’12, ACM Conference on Computer and Com-
munications Security, Raleigh, NC, October 16–18, 2012.

5.	 K. Stouffer, J. Falco, and K. Scarfone, Guide to Industrial Control Systems (ICS)
Security. NIST Special Publication 800-82, National Institute of Standards and
Technology, Gaithersburg, MD, May 2013.

6.	 FireEye Advanced Threat Report: 2013. FireEye Labs, Milpitas, Calif., February 2014.
	 URL:
<http://www2.fireeye.com/rs/fireye/images/fireeye-advanced-threat-report-2013.pdf>
7.	 DO-178C, Software Considerations in Airborne Systems and Equipment Certification,

RTCA SC-205, 2011.
8.	 ARP4754A, Guidelines for Development of Civil Aircraft and Systems, Society of

Automotive Engineers, August 1995. URL: <http://standards.sae.org/arp4754a/>
9.	 ARP4761, Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment, Society of Automotive Engineers, Decem-
ber 2010. URL: <http://standards.sae.org/arp4761/>

10.	 DO-326A, Airworthiness Security Process Specification, RTCA SC-216, December
2010.

11.	 A.J. Kornecki, J. Zalewski, Aviation Software: Safety and Security. In: Wiley Encyclopedia
of Electrical and Electronics Engineering, J. Webster (Ed.), John Wiley and Sons, New York,
2015.

12.	Committee on National Security Systems, National Information Assurance Glossary. CNSS
Instruction No. 4009, 26 April 2010.

	 URL: <www.ncix.gov/publications/policy/docs/CNSSI_4009.pdf>
13.	Comparison of Threat Modeling Methodologies, May 28, 2012.
	 URL: <http://myappsecurity.com/comparison-threat-modeling-methodologies/>
14.	PASTA Process for Attack Simulation & Threat Assessment, 2013.
	 URL: <http://versprite.com/docs/PASTA_Abstract.pdf>
15.	 E. Saitta, B. Larcom, and M. Eddington, Trike v1: Methodology Document (Draft), July 20,

2005. URL: <http://octotrike.org/papers/>
16.	 F. Swiderski, W. Snyder, Threat Modeling, Microsoft Press, Redmond, Washington, 2004.
17.	 P.T. Ward and S.J. Mellor, Structured Development for Real-Time Systems. Vol. 1, Prentice

Hall, Englewood Cliffs, NJ, 1985.
18.	 D. Dillon, Developer-Driven Threat Modeling Lessons Learned in the Trenches, IEEE Software,

Vol. 9, No. 4, pp. 41-47, July/August 2011.
19.	 T.G. McGee et al., Mighty Eagle: The Development and Flight Testing of an Autonomous

Robotic Lander Test Bed. Johns Hopkins APL Technical Digest, Vol. 32, No. 3, pp. 619-635,
2013.

20.	R. Black, M. Fletcher, Simplified Robotics Avionics System: A Integrated Modular Architec-
ture Applied Across a Group of Robotic Elements, 25th Digital Avionics Systems Conference,
2006 IEEE/AIAA , pp.1,12, 15-19 Oct. 2006, DOI: 10.1109/DASC.2006.313775

21.	F. Boniol, V. Wiels, Towards Modular and Certified Avionics for UAV, AerospaceLab Journal,
Issue 8, December 2014. DOI : 10.12762/2014.AL08-02.

22.	RTCA Inc., SC-203. DO-344 Volume 1 & 2 - Operational and Functional Requirements and
Safety Objectives for Unmanned Aircraft System Standards, June 19, 2013.

	 URL: <http://www.rtca.org/store_product.asp?prodid=1113>

mailto:abebaquero@gmail.com
mailto:kornecka@erau.edu
mailto:zalewski@fgcu.edu
http://www2.fireeye.com/rs/fireye/images/fireeye-advanced-threat-report-2013.pdf
http://standards.sae.org/arp4754a/
http://standards.sae.org/arp4761/
http://www.ncix.gov/publications/policy/docs/CNSSI_4009.pdf
http://myappsecurity.com/comparison-threat-modeling-methodologies/
http://versprite.com/docs/PASTA_Abstract.pdf
http://octotrike.org/papers/
http://www.rtca.org/store_product.asp?prodid=1113

28 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

1. Introduction
Today’s most dynamic and successful organizations face

constant pressure to expand market share with products and
services that are attractive to a shifting and sophisticated global
population. Organizations, especially those operating in competi-
tive, technology-driven environments must establish strategies
that embrace creativity and innovation in order to maintain hard-
won reputations for consistently providing exciting and desirable
products [1]. Unfortunately, organizations often repeat strategies
that proved effective in the past, but find that those old patterns
no longer provide the spark captured by systems and products
that are considered truly innovative. This leads to the ques-
tion: can a life cycle process be used to define, capture and be
systematically applied to provide businesses with a repeatable
format that consistently delivers innovative and cutting edge
developments?

Extending Life
Cycle Models for
a Repeatable
Innovation Strategy
Duffy Nobles, U.S. Dept. of the Treasury
Kevin MacG. Adams, Ph.D., University of Maryland

Abstract. The goal of many organizations is to be recognized as a business
leader that consistently delivers innovative products and services. Different types
of life cycle models have been used to guide the systems development efforts and
implementation processes within these organizations, all with various outcomes.
This paper first explores the reasons why innovation is so elusive, so difficult
to achieve and almost impossible to predict. It then explores the possibility of
enhancing existing life cycle frameworks so that innovation and break-through
accomplishments become part of the organizational structure, not just a random
or one-time achievement. It also identifies modern examples and other research
data to identify such factors as the expansion of knowledge assets, new patterns
for collaboration, environments for radical creativity and transformational skill sets.
These findings suggest that a life cycle methodology with the necessary attributes
can increase the probability for achieving a repeatable process for innovation.

2. Architecting Innovation
Innovation is a recognizable element that expands, defines

and delivers solutions to both existing and unimagined needs in
a novel and effective manner. Innovation differentiates com-
panies by providing an aura of originality and creativity that
customers appreciate and competitors tend to imitate. Innova-
tive products and services can influence consumer trends and
have the potential to impact markets on a global level. But this
achievement is not guaranteed nor can it be predicted with
assurance, even with businesses known for past exceptional
innovative accomplishments.

There are several factors that make implementing a repeat-
able process that delivers innovative products difficult. The most
dominant is the perception of risk and the uncertainty that is
inherent with any new, untried endeavor [14]. The investments in
knowledge, time and financial commitments needed to identify
and develop untried products require a leap into the unknown
that in the end, still could fail to capture customer expectations
or fall short of business objectives. Many corporate leaders
view the aggressive investments that innovation demands as “a
high-risk, high-cost endeavor, that promises uncertain returns”
[20] with “challenges [that] often are considered just too high a
risk” [14].

Creating a culture of innovation is a commitment that moves
the organization beyond the expected modes of thinking and
past its current business practices. The decision to be a corpo-
rate innovator requires developing the resources and promoting
a strategy for generating the new concepts needed for a “radi-
cal model that challenges fundamental assumptions” [15].

A workable life cycle radical model for innovation would
necessarily provide a usable framework that applies a repeat-
able and realistic structure lifecycle. A suitable methodology
would encourage a system-wide, possibility-oriented approach
that would be more conducive for innovative systems and work
products. This type of non-linear process would represent a
significant departure from the more traditional ends-oriented
approach used by most enterprises today [2].

There are many determinants that can prove useful for
calculating an organization’s level of commitment to systematic
innovation. There are, for example, methods and techniques that
map the degree of an organization’s performance in relation to
global trends and technology developments [3]. The potential for
establishing a successful innovation environment can actually be
estimated by considering the impact on four specific elements:
product, process, position and paradigm [3] and the amount of
resources and degree of importance that the enterprise applies
to each one.

Life cycles often include iterative stages where system
capabilities, functional requirements, technical enhancements
and design features are periodically updated to keep a prod-
uct or service competitive and current. Innovation, on the other
hand, requires a paradigm shift that results in something entirely
original, that is recognized as “something new that didn’t exist
before” [2]. The term radical innovation describes the acquisition
of a truly unique offering or a novel technology that differs dras-

CrossTalk—November/December 2015 29

FUSING IT & REAL-TIME TACTICAL

tically from any preexisting alternatives. It requires a different
cognitive frame of reference, one that generates new ideas and
assumptions and becomes much more than just the introduc-
tion of a leading-edge product or a new service or technology
[4]. This is achieved by, what may be regarded at first as, a risky
commitment to an ambiguous, resource-intensive learning pro-
cess. Success often results in changes that lead to the displace-
ment of system capabilities and knowledge investments already
established by other competitors and major business players [4].

Radical innovation can indeed be disruptive [5]. But, it is also
synonymous with ground-breaking, future-focused products
which, in turn can become engines for rapid economic growth
with the “power to create entire industries” [6] and change
the competitive landscape. Clearly, committing organizational
resources to the pursuit of innovation can be an extremely
uncertain and risky process for a number of reasons [3]. Previ-
ous assumptions derived from existing technologies suddenly
become irrelevant in that the available existing knowledge and
experiences have little value in the context of the new innova-
tion [4]. But upsetting the existing status quo in this manner can
also be viewed as a corporate advantage.

3. The Dynamics of Innovation
Can the concept of innovation realistically be deconstructed,

analyzed and reapplied by an organization into a repeatable
lifecycle process that consistently generates inventive products?
Developing a culture dedicated to innovation is the stated goal
of many organizations. It is often included in their strategy and
mission statements and identified as a technology or system
objective. Unfortunately, achieving this goal is unpredictable; few
businesses “seem to [understand] the very notion of innovation
and how to apply it… innovation is often misunderstood [and]
considered too difficult for practice” [2].

Innovation is characterized by the degree that a new system,
product or process is developed from new technology and ideas
that differ substantially from what existed before [6]. A life cycle
that consistently achieves dramatic break-throughs requires
structures and processes that create emergent, non-linear
improvements on a recurring basis. The real value comes from
combining the “knowledge… the direction, the purpose, [and]
the focus [toward] innovation” [2]. Such a knowledge-focused
model would redefine connections between the acquisition
procedures, the application of new tools, changing technology
platforms, and ever-rising expectations to expand assumptions
and possibilities [4]. These then become the new knowledge as-
sets that establish the organization’s ability to “identify, acquire,
integrate and exploit” [4] both the practical and intangible ele-
ments needed to support a life cycle process that is conducive
to an on-going culture of innovation [2].

Innovation defies prediction; if it was predictable, “then it
wouldn’t be innovation” [2]. Nevertheless, increasing opportuni-
ties for innovative activities require that all system resources,
components, strategies, etc. collectively form an environment
where a higher degree of creative freedom becomes a pos-
sibility [2]. Clearly, expansion of creativity would be a major
factor of the innovative life cycle methodology, where expecta-

tions become free of the deterministic restrictions of existing
system-building assumptions. This would encourage a system-
atic culture that promotes the kind of corporate mindset that is
“necessary to invigorate and regenerate the firm’s life” [7]. In this
case, that means a dynamic shift toward fostering non-linear
learning experiences by “encouraging, recognizing, and reward-
ing creativity” [1]. These inducements stimulate the long term
conditions of generative learning that are needed for “architect-
ing the dynamics of innovation” [2]. In this context, innovation
becomes a real possibility.

4. Life Cycle Models
Companies known for reliably delivering products and ser-

vices that consistently raise the bar for innovation and new ad-
vancements are usually considered to be focused and forward
thinking as well. Credit for this is usually given to the “free will
and creative activity of the [firms] and their decision making” [7]
as well as the “know-what, know-why, and know-how” [4] that is
strategically encapsulated by the business and product life cycle
models.

One common factor that “all systems and models have is that
they involve abstractions “[8]. A model for innovation would be
no different. Unfortunately, as stated, organizations, like other
entities, tend to pursue the same strategies that proved effec-
tive in the past. The tried and true organizational structures and
knowledge baselines must somehow bend with changing tech-
nologies and expectations, if not, they may become dated and
ineffective when new stages of development occur. Yesterday’s
great and admired innovations soon become technological relics
of the past as they are unceremoniously discarded for the next
new thing.

Many companies have enjoyed such impressive successes
with their innovative achievements in the march toward today’s
modern computing capabilities [19]. Corporate reputations have
been preserved over time through aggressive investments in
new technologies, but many of these companies are no longer
regarded as leaders of innovation. The pioneers in mainframe
computing, for example, missed the emergence of the mini-
computer. Many minicomputer manufacturers, in turn, failed to
capitalize on desktop computer [17].

The rise of mobile computing and social marketing presented
additional opportunities for the forward thinking organization.
Innovation is now expected. Tracking consumer opinions and
influencing acceptance decisions is considered a competitive
advantage. This advantage can actually be achieved by the ma-
nipulation of a specific set of “innovation attributes” [18]. These
attributes include controlling the perception that the product is
superior to its rivals, that the product is compatible with personal
values and that the complexity associated with understanding
and using the product falls within an acceptable range [18].

The goal then is to establish a life cycle methodology where
success is defined by continually identifying the key factors
needed to transform and restructure the activities that lead to
new break-through opportunities [5]. “The life cycle literature is
replete with different models” [7] attempting to identify the dif-
ference-making factors and then re-composing them into new

30 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

	

K
Knowledge	
Diversity

Knowledge	
Depth

Knowledge	
Linkages

KTechnology
Sensing Experimentation Level	of	

In
Level	of	
Innovation

Behavioral	Dimension:	Routines

Epistemic	Dimension:
Knowledge	Base

Table 1: Meta-system Element and Coordinating Relationships [8]

Figure 1. Knowledge-based model of Behavior and Innovation [4]

sets of rules, phases, iterations or build components. Appropri-
ate models must provide the system guidance and controls
throughout all life cycle phases that can be applied to both the
business strategies and the changing competitive environment
[10]. Successful organizations manage to weave the concept
of simultaneously running their business while changing their
business at the same time [11]. This ambidextrous behavior ap-
plies to “the organization’s strategies, systems, scorecards and
incentives” [11].

5. Models and Examples
There are two models that offer elements that are use-

ful for advancing the concept of an innovation life cycle. The
first comes from the Theory of Retroduction Abduction where
empirical research and pre-existing bodies of abstract ideas
are used to develop conceptual models [8]. One model, based
on the Software Development Life Cycle (SDLC) identifies
three aspects that form a basic framework for synthesizing and
formalizing these empirical data into a life cycle meta-system.
These elements consist of: the empirical, the actual and the real.
Another similar model, based on the same reasoning and SDLC
methodologies, was cited as representing a more modern man-
agement system that was recently developed and used in China
[8]. This model extends the original elements by examining their
relational impact on individual life-cycle events regarding the
levels of “adjusting, convincing, and committing” [8]. These three
relational coordinates link to the three meta-systems elements.
They differ in that they are seen as themes that explain the
relationships needed for coordinating and adjusting subsequent
life cycle stages by acting together to solve any problems that
surface. Table 1 compares the meta-system elements with the
relational values.

These concepts not only suggest an approach for identify-
ing and embodying the intangible factors and attitudinal shifts
needed for sustained creative thinking, they also describe meta-
system elements by which innovation methodologies can be
developed and operated.

The second example is derived from the Theory of Absorptive
Capacity (ACAP) which represents a knowledge-based model
for radical innovation [4]. The ACAP model defines an organiza-
tion’s behavioral routines by demonstrating how effectively it
identifies, acquires, integrates, and exploits knowledge relative
to the quality of its domain intelligence and access to technolo-
gies. The quality of an organization’s total knowledge portfolio is
defined by two dimensions, according to: a) “what it knows – its
knowledge base” and, b) “what it does – its routines”[4] . This
directly corresponds to the dual concept of idea generation and
idea implementation [12]. The model is depicted in Figure 1.

This model shows how specific factors affect different types
of organizations by focusing on their internal and external
knowledge adoptions. These adoptions can occur either sepa-
rately or in combination, depending on the knowledge base, but
when successful, they result in the generation of new knowl-
edge paradigms. In other words, the analytical results reveal the
level of innovation potential by simply showing that an outcome
“can be defined as the number of…innovations it adopts” [4]
through the management and execution of the corporate knowl-
edge assets defined in Table 2.

When traditional publishing firms were faced with the chal-
lenges of the emerging, on-demand publishing market, they
were forced to develop new methods for delivering specific
customer-defined information services, media formats, etc.
To succeed, the firms had to restructure the basic knowledge
assets already embedded within their data stores and shift into
new capabilities and strategies for product development and
information dissemination [16]. This absorption process, along
with a redefinition of assumptions, allowed data to be recon-
figured and transformed into structures that supported the
implementation of innovative information products and content
delivery systems.

Meta-System Elements Coordinating Relations Description
The Empirical Committing Conclusions are drawn from research data
The Actual Convincing Information that is bound by the context of its own

situation
The Real Adjusting Contains the deeper-level regularities of system behavior

which drives the other two
	

CrossTalk—November/December 2015 31

FUSING IT & REAL-TIME TACTICAL

Figure 1. Knowledge-based model of Behavior and Innovation [4]

Table 2: Knowledge Assets and Descriptions [4]
 Asset Description
Knowledge Diversity: Denotes the extent to which a wide distinction of unique knowledge elements

influence specific tasks
Knowledge Depth: Represents the level of detail, knowledge quality, and depth of domain expertise

that can be leveraged.
Knowledge Linkage: Refers to the channels through which gathered and accumulated, the relationships

formed with vendors, clients, scholars and experts.
	

When included as building blocks in life cycle strategies,
these factors encourage innovation by increasing cooperative
creativity, establishing non-linear channels for thoughtful collab-
orations, and allowing for the possibility of serendipity, etc. This
kind of business intelligence, in turn has a direct and long-term
impact on the organizational behaviors and decision-making
responses when endorsed in the life cycle methodology.

6. Transformational Leadership
Repeatable innovation requires that an organization’s life

cycle methodology has the built-in foresight and flexibility, on a
systems level, to adjust to changes in the direction of techno-
logical discoveries, the competitive environment, the business
mission, and to product or service outcomes [10]. Ultimately,
however, it is the capabilities demonstrated by talented leader-
ship that plays an integral part in the process by setting the
high expectations and directing the activities needed to sustain
environments that favor creativity and innovation [13].

It was found that skilled transformational leaders actually
enhance the probability for innovative outcomes [1]. They serve
as critical influences for overcoming organizational and team
hurdles by providing a specific and recognizable transforma-
tional leadership style.

Transformational leaders display a certain degree of behaviors
that emphasize change, encourage out-of-the-box thinking and
promote individual empowerment [12]. They accomplish this
in two ways. First, by constructing a creative environment that
favors innovation and second, by directing the strategic goals,
activities and expectations needed to sustain the performance
of project members and other contributors at high levels [13].

Leaders display transformational abilities by articulate a
compelling and inspirational vision. They raise the confidence,
aspirations and performance expectations of their followers [1].
This lends proof to the suggestion that “leadership is among the
most important factors affecting innovation” [1]. The transforma-
tional leader establishes a creative knowledge environment or
CKE which ensures that “the social and organizational char-
acteristics at the team and organizational levels, have a crucial
influence on the innovation processes” [13]. They motivate the
team with an attractive vision of future states.

Transformational leaders are skilled at motivating people and
their leadership style convinces teams to buy into their visions
and work ethics by steering workplace perceptions in ways that
influence and encourage the desirable innovation behaviors [1].
Quality team performance is defined as the quantity of imple-
mented ideas “in terms of [their] novelty, magnitude, radicalness
and effectiveness”, in other words, the degree of originality and
inventiveness; the characteristics of innovation [12].

7. Conclusion
Many organizations are capable of producing a system, a

product or a service that is considered radically innovative, but
repeating the feat is often elusive and in many cases impossible.
New technology developments combined with shifting collabo-
ration patterns can expand the corporate knowledge base and
create new possibilities that never existed before. The factors
that contribute to creative, non-linear, out of the box thinking
when identified and isolated can be decomposed and reas-
sembled into an enhanced life cycle methodology where innova-
tion becomes a repeatable part of the development process.
Innovation can never be predicted, of course. But with focused,
transformational leadership, a solid understanding of necessary
system meta-elements, and an environment that encourages
radical creativity, a foundation can be developed where innova-
tion is expected and can be sustained.

So, to answer the question posed in the introduction: can
a repeatable life cycle be defined and applied as a business
process that consistently delivers innovative and cutting edge
systems and products? Well, the answer needs much more
research, but the foundational elements for such a consideration
certainly already exists.

32 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

Duffy Nobles, PMP, ITILv3, has years of experience leading highly performing teams in planning, managing
and developing solutions for complex federal and commercial systems. Until recently, he worked for the MITRE
Corp. where he provided systems engineering services for projects at the U.S. Census Bureau, the Transpor-
tation Security Administration (TSA) and the Department of Veterans Affairs (VA). He is currently managing
international compliance and taxation projects at the U.S. Dept. of the Treasury.

9017 Gettysburg Lane
College Park, MD 20781
Phone: (301) 219-7499
Email: dufnobles@hotmail.com

Dr. Kevin MacG. Adams is an Adjunct Professor at the University of Maryland University College where he
teaches software and systems engineering in the graduate program in Information Technology. Dr. Adams is
a retired Navy submarine officer and information systems consultant. Dr. Adams holds a B.S. in Ceramic Engi-
neering from Rutgers University, an M.S. in Naval Architecture and Marine Engineering and an M.S. in Materials
Engineering both from MIT, and a Ph.D. in Systems Engineering from Old Dominion University.

University of Maryland University College
3501 University Blvd. East,
Adelphi, Maryland 20783
Phone: (757) 855-1954
Email: kevin.adams@faculty.umuc.edu

ABOUT THE AUTHORS

REFERENCES

1.	 L. Gumusluoglu and A. Ilsev, “Transformational Leadership and Organizational
Innovation: The Roles of Internal and External Support for Innovation*,” Journal of
Product Innovation Management, vol. 26, pp. 264-277, 2009.

2.	 T. Jörg and S. Akkaoui Hughes, “Architecting the dynamics of innovation,” in
Proceedings of the International Conference on Intellectual Capital, Knowledge
Management & Organizational Learning, L. Garcia, A. Rodriguez-Castellanos, and
J. Barrutia-Guenaga, Eds., ed. Reading, UK: Academic Conferences and Publishing
International Limited, 2013, pp. 222-230.

3.	 R. H. Abdel-Razek and D. S. Alsanad, “Mapping Technological Innovation: Methodol-
ogy and Implementation,” Global Conference on Business & Finance Proceedings,
vol. 8, pp. 175-183, 2013.

4.	 J. L. Carlo, K. Lyytinen, and G. M. Rose, “A knowledge-based model of radical
innovation in small software firms,” MIS Quarterly, vol. 36, pp. 865-896, 2012.

5.	 J. P. Dismukes, J. A. Bers, and J. A. Sekhar, “Toward a holistic six-period radical
innovation life cycle model,” International Journal of Innovation & Technology
Management, vol. 9, pp. 12500011-125000127, 2012.

6.	 V. Eiriz, A. N. A. Faria, and N. Barbosa, “Firm growth and innovation: Towards a
typology of innovation strategy,” Innovation: Management, Policy & Practice, vol. 15,
pp. 97-111, 2013.

7.	 D. L. Lester, J. A. Parnell, and M. L. Menefee, “Organizational life cycle and innova-
tion among entrepreneurial enterprises,” Journal of Small Business Strategy, vol. 19,
pp. 37-49, 2009.

8.	 C. M. Brugha, “Implications from Decision Science for the Systems Development
Life Cycle in Information Systems,” Information Systems Frontiers, vol. 3, pp. 91-
105, 2001.

9.	 L. Greiner, “Evolution and revolution as organizations grow,” Harvard Business
Review, vol. 50, pp. 37-46, 1972.

10.	 S. M. Auzair, “Organisational life cycle stages and management control systems in
service organisations,” International Journal of Business and Management, vol. 5,
pp. 56-65, 2010.

11.	 J. R. Latham, “Leadership for Quality and Innovation: Challenges, Theories, and a
Framework for Future Research,” Quality Management Journal, vol. 21, pp. 11-15,
2014.

12.	S. A. Eisenbeifs and S. Boerner, “Transformational Leadership and R&D Innovation:
Taking a Curvilinear Approach,” Creativity and Innovation Management, vol. 19, pp.
364-372, 2010.

13.	L. Denti and S. Hemlin, “Leadership and innovation in organization: A systematic
review of factors that mediate or moderate the relationship,” International Journal
of Innovation Management, vol. 16, pp. 12400071-124000720, 2012.

14.	M. Johnson, “Barriers to Innovation Adoption: A Study of e-Markets,” Industrial
Management and Data Systems, vol. 110, pp. 157-174, 2010.

15.	 J. Euchner, “The Uses and Risks of Open Innovation,” Research Technology Man-
agement, vol. 56, pp. 49-54, 2013.

16.	 F. A. Van, H.W. Volberda and M. de Boer, M, “Coevolution of Firm Absorptive Capac-
ity and Knowledge Environment: Organizational Forms and Combinative Ccapabili-
ties,” Organization Science, vol.10, pp. 551-568, 1999.

17.	 C. M.. Christensen and J. L. Bower, “Customer Power, Strategic Investment, and the
Failure of Leading Firms,” Strategic Management Journal, vol. 17, pp. 197-218, 1966.

18.	 G. Roach, “Customer Perceptions of Mobile Phone Marketing: A Direct Marketing
Innovation,” Direct Marketing, vol. 3, pp. 124-138, 2009.

 19.	N. Ensmenger, “The Digital Construction of Technology: Rethinking the History of
Computers in Society,” Technology and Culture, vol. 53, pp. 753-776, 2012.

20.	T. D. Kuczmarski, “What is Innovation? The Art of Welcoming Risks,” The Journal of
COnsumer Marketing, vol. 13.5, pp. 7-11, 1996.

mailto:dufnobles@hotmail.com
mailto:kevin.adams@faculty.umuc.edu

CrossTalk—November/December 2015 33

FUSING IT & REAL-TIME TACTICAL

Introduction
Software has had security issues since its inception. Now with

nearly everyone on the planet carrying networked computers
in their pockets added with the rise in hacking (gaining unau-
thorized access), vulnerabilities must be prevented. With the
increased use of embedded devices and mobile systems (smart
phones, pacemakers, cpus and interface units in cars and Blue-
tooth networks in and connected to cars, tanks, Humvees, etc.),
devices that once were not considered a security risk should
always be considered vulnerable. The industry is experiencing
hacking of embedded systems such as avionics (GPS spoofing
of drones, even cars), medical (pacemakers), and factory sys-
tems (controllers). Solders now carry “personal” cell phones as
well as other “smart” devices into the battlefield to assist them
in tracking friendlies and enemies” or to call in air strikes, as
simple examples. These example mobile and embedded systems
and the software executing on them represent non-traditional
threats yet are examples of areas where software compromises
must be stopped.

It may be tempting to consider mobile and embedded devices
using the same security measures as traditional IT systems. In
some cases, this may mitigate vulnerabilities. However, mobile

Mobile and Embedded Security
Mitigations for Counterfeit Threats
and Software Vulnerabilities
Jon Hagar, Grand Software Testing

Abstract. Mobile and embedded software teams, users and stakeholders have
historically underestimated the risk of security threats. As a result, vulnerabili-
ties that can be exploited by hackers to gain access to mobile and embedded
software devices are on the rise and will only continue unless the programming
and testing staff takes measures to prevent them. These vulnerabilities can come
from many sources such as: inadequate architecture or poor design, software
coding errors, and intentional code such as viruses and back doors inserted
into the code during development or updates. This paper examines a variety of
good engineering practices that should be considered to minimize and control
vulnerabilities during development and test activities. While much of this advice
may seem common to historic information technology (IT) security concepts, it is
still under used in many mobile and embedded system projects. An overview of
testing attack concepts with specific considerations for mobile and embedded
software devices will be introduced.

and embedded devices have features that set them apart from
traditional IT systems including:

•	 Networking situations that change quickly or networks that 	
	 can be subject to vulnerabilities themselves;

•	 Mobility issues such as device ownership that can be 	
	 changed or lost without prior knowledge or devices with 	
	 features supporting movement, etc.;

•	 Resource limitations such as power, processing speed, 	
	 memory, and certain timing issues;

•	 Environmental factors such as water, sun, cold, heat, dust, 	
	 moisture, and so forth;

•	 Different user interfaces (UIs) such as smaller screen size, 	
	 readability, touch screen issues including swiping;

•	 Operability on many hardware platforms and integration 	
	 issues;

•	 Different cycles of software and hardware updates and 	
	 how those are handled, compared to the classic IT domain.

Mobile and embedded development teams have begun to
recognize the impact of these aspects but are slowly reacting to
the security threats. Further, mobile and embedded devices may
contain unknown, even counterfeit software that can present a
threat without the knowledge of the user or network. Even with-
out counterfeit software, the system may come with vulnerabili-
ties [1, 2]. Further, the rapid growth of 25% (or more) per year in
mobile and embedded software markets [3] means that security
risks are likely to increase.

This paper examines software lifecycle considerations for
reducing security threats with a focus on security test attacks.
Since security topics are large and complex only basic introduc-
tions are presented with pointers to further information.

Software is now embedded in cars which are being hacked
[4, 5], industrial control systems which are at risk [6], mobile de-
vices with vulnerabilities [7, 8, 9, 10], medical devices that have
been hacked [11] and other areas, all of which face security
concerns. The paper defines development mitigations including
architecture, design and coding practices. Then, security attacks
that the test team should consider are summarized. While a ma-
jority of the concepts presented are applicable to various types
of software domains, many of the concepts presented are either
not well known or well-practiced within mobile and embedded
software development projects, as illustrated in error taxono-

34 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

mies reported in [2, 5, 7]. A goal of this paper is to increase the
awareness on mobile and embedded development projects of
basic security concepts, while presenting some security con-
cepts tailored to mobile and embedded domains.

The Situation: Mobile and Embedded Software
Security Threats [1]

At one time, not too many years ago, mobile systems, did not
exist and, embedded software devices were safely sequestered
and isolated from networks. Thus, security threats to such de-
vices and systems were limited or not considered, at all. Mobile
and embedded development teams may have introduced secu-
rity vulnerabilities but did not conduct security testing because
of the lack of risk. This is changing. For example, a Coverity
Scan 2010 Open Source Integrity Report for Android [6] done
using static analysis testing (a type of attack) found 0.47 de-
fects per 1,000 Source Lines of Code (SLOC) for a total 359
defects. Of these, 88 were considered “high risk” in the security
domain. Also, an OS hole in Android with Angry Birds counterfeit
software allowed researchers Jon Oberheide and Zach Lanier
(http://jon.oberheide.org/) to gain access to embedded devices.
Further, there are numerous reports [2] of cars and medical
devices now being hacked. Additionally, soldiers and employees
are carrying personal devices (smart phones) into the theatre
and work environments that cannot be certified “risk free.” With

security attacks such as GPS spoofing and cracking attacks,
these devices introduce a risk brought in by the very users
of the devices. And finally, there is the Stuxnet virus (http://
spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-
rewriting-the-cyberterrorism-playbook) and its decedents which
demonstrate risks to factory control systems worldwide. These
data points illustrate the risk of vulnerabilities to mobile and
embedded devices. Teams need to be aware of traditional IT
security approaches as well as those for mobile and embedded
considerations.

Potential Solutions
For every security counter measure solution, hackers may find

another problem or attack to implement. It is a constant game
of cat and mouse. It is tempting to go back to pen and paper
but even these were not secure! There are numerous general
security safeguarding measures to consider, which are covered
in this article.

If teams could create perfect software, they would not need
to be concerned with security vulnerabilities because they could
just “build it” secure. But since software development is a hu-
man creative process and humans make mistakes at all levels
of development (concept and requirements, architecture and
design, coding, and testing), teams can only seek to minimize
security risks during these efforts.

http://jon.oberheide.org/
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://www.navair.navy.mil

CrossTalk—November/December 2015 35

FUSING IT & REAL-TIME TACTICAL

Development Pattern Activity 1: Plan and Specify
a Secure System [12]

Certainly building a more secure software system must start
at the beginning with plans, concepts, and system specifications.
The more security risks a software system has, the more these
efforts can be justified. For example, consider:

•	 Methods to clearly specify requirements - see http://sun	
	 nyday.mit.edu/safer-world/index.html

•	 Formal methods - see https://www.ece.cmu.		
	 edu/~koopman/des_s99/formal_methods/

•	 Model-based systems and software development - see 	
	 Object Modeling Group at http://utp.omg.org/

Such approaches may be of use for some mobile and embed-
ded systems, but more than likely, most systems with software
efforts will use a waterfall lifecycle or derivative of it, or alterna-
tively, they will use agile concepts [13]. However, any approach
can introduce vulnerabilities. Additionally, most mobile and
embedded systems are a mix of non-developed (off-the-shelf)
and customized software components, both of which come with
vulnerabilities. Organizations need to put forth a good offense
and defense starting with systems engineering. Active Systems
Engineering addresses functional and non-functional require-
ments, including security characteristics. Systems engineering
should be supported by the right level of system analysis includ-
ing active verification and validation with early attack testing,
which can find some errors even before coding starts.

Finally, planning should address product control concepts
such as anti-tamper features, software protection for down-
loaded files to ensure “correct” software is obtained e.g., internal
signatures such as a checksum, encrypted files and data, and
trusted supply chain management. These concepts can be
used to reduce the likelihood of a project obtaining counterfeit
software from outside parties (i.e., malware). Afterwards, plans
would progress into design, architecture, coding, and testing
where each stage would ensure that steps are taken so that
malicious or vulnerable software is not introduced into the
product.

Development Pattern Activity 2: Design and Archi-
tecture [14]

As the system is planned and specified, considerations
regarding architecture and design need to be included. In
architecture and design, the engineer needs to develop secure
software with proven practices including:

•	 Selecting secure architecture structures;
•	 Careful development of data structures and databases;
•	 Trade studies and specification of non-developed items;
•	 Minimization of design coupling and maximized cohesion;
•	 Involvement of user considerations, where user includes 	

	 the malicious user or hacker;
•	 Rigorous systems and software engineering practices 	

	 including threat and risk assessment; and
•	 Design practices that consider security threats.

Weak architecture and design practices can impact the overall
vulnerabilities that no amount of good coding and test practices
can fully overcome.

Development Pattern Activity 3: Coding Practices
[2]

With foundations of requirements and frameworks provided
by architecture and design, implementation programming stands
a better chance of minimizing errors and vulnerabilities. All
projects need good coding practices in place to help minimize
sloppy coding practices which can introduce risks. Samples of
recommended mobile and embedded coding practices are listed
in Table 1.

Development Pattern Activity 4: Verification and
Validation Security Testing

A significant focus of this paper is on concepts that can be
applied to mobile and embedded systems at any point in time
to improve and address security vulnerabilities by applying soft-
ware verification and validation testing concepts as defined in
standards such as IEEE 1012 and ISO29119 [17,18]. Verifica-
tion and validation security testing is applicable during develop-

	
Implementation Practice Examples
Secure code generation Teams should check for back doors, malware, and error prone code constructs
Defensive coding Programmers initialize variables, bound and check tables, and logic redundancy

[common mobile and embedded errors per 2]
COTS and open source code (to avoid
counterfeit code)

Team uses wrappers to protect code, limits visibility of variables e.g., few if any
global variables, conducts acceptance-security testing on mobile and embedded
non developed code, focuses on “unique” interactions of one-of-kind “new”
hardware with existing software, signatures, trusted vendors, anti-tamper,
encryption, etc.

Static code analysis (SCA) Testers use static code analysis tool to identify errors with tools containing specific
checks for security issues and mobile and embedded error types

Developer testing Programmers use object/unit test, coverage metrics, test first,
Note: Many embedded systems require higher (than IT) levels of structural code
coverage [15]

IEEE and ISO standards such as
1012, 12207, 15288 and 29119

Team follows industry standards respectively, and many mobile and embedded
device maybe highly regulated with several compliance standards

Project coding standards Project has locally defined coding standards or checklists that are followed and
tailored for mobile and embedded coding practices

Analysis practices including software
reliability engineering [16]

Team conducts threat analysis, risk analysis, failure mode effect analysis (FMEA)
and failure mode effects and criticality analysis (FMECA), software reliability
engineering, performance analysis, and so forth with a focus on unique aspects of
hardware, software and operations.

Model or math-based engineering Team uses models to generate code; use math principles in coding and logic, which
is more common in critical embedded systems

Table 1: A Sampling of Secure Implementation Practices in Mobile and Embedded Development

http://sun
https://www.ece.cmu
http://utp.omg.org/

36 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

ment, operation, and maintenance. For example, the security
threats of a piece of mobile software will likely evolve as the
devices are used in differing situations and for newer purposes
in operational use. Consider a smart phone app designed for
civilian use that is taken into the battlefield without proper
security testing only to end up compromising, hurting or killing
our troops or our “friendlies.” As part of full life cycle rigorous
security practices, the concepts of risk and attack-based testing
[18,2] prove particularly useful.

Risk-based Testing with Criticality Levels [18]
Fundamental to many development and testing efforts is

the idea of risk management. Not every mobile or embedded
software device poses the same risk, threat, or has the same
vulnerabilities. For example, a small standalone mobile game
on a smart phone is not the same as a mobile mapping app
that a solider may be using, but when on this person in a given
situation, this smart phone and the app may be a security threat.
Understanding the risk directs much of the development and
testing efforts. IEEE 1012 defines integrity levels that can be
used to determine the nature of verification and validation and/

or testing. ISO29119 uses risk-based testing to determine test
plans, design, levels, and techniques. Basically, more risk in the
security or quality areas would mean more testing should be
done.

Currently, many mobile and some embedded software
systems opt for “no security risk.” This may mean no or minimal
testing. However, the use of such software in different opera-
tional uses (i.e., networked) can mean more testing is needed.
Further, the use and incorporation of non-developed (off-the-
shelf) software may introduce the risk of counterfeit software
parts. When risk analysis indicates security concerns, rigorous
verification and validation with attack-based testing are often
indicated.

Attack-based Testing [2, 19,20,21]
A test attack is a pattern to approach testing based on com-

mon modes of failure seen over and over. Attacking software
and systems is an attempt to demonstrate that they (hardware,
software, and operations) do not meet requirements or function-
al and non-functional objectives. Attacks target errors as well
as provide other valuable information to stakeholders. Because

Named
Attack

Apply Against Example Considerations

Penetration
Attack

Account
numbers/user ids

Use tools to gain access e.g., pkcrack

 Passwords Check common passwords that may be “shortened” due to mobile device
characteristics such as screen size, no keyboard, etc.

 Usage profiles How is the device’s usage profile or data being used in mobility?
 Location tags Where is the device, are tags temporary as the device moves, and what is

reported to an open network (cellular, Wi-Fi, etc.)?
Fuzz Testing
Sub Attack

External inputs e.g.,
userids passwords

Use fuzzing tool to attack the mobile and embedded interfaces

Spoofing
Attack

“Hijacked” Identity Use spoofing tools in mobile and embedded “sand box” test environments (a
sand box is separated from the full networked world so testing can be done
“safely”)

 User profile spoof Lab environment setup is important. For example, a tester should consider using
software based simulators when testing phones/device-ids since many apps key
on this in the hardware and then the app “locks out” a particular device (device-
id) when it is used in security testing more than a few times. This increases
testing costs because a string of new devices must always be on hand and used
to complete security testing.

 GPS spoof Requires specialized equipment and labs. But for devices dependent on GPS,
this may be a “high” risk factor

 "Social Engineering"
spoof

Attack like the hackers, who are shifting their focus to mobile and embedded
systems

Checking
attack

"Hidden" files with
unsecured data

Many mobile and embedded devices have a file structure allowing files to be
hidden by programmers; files may not be easy to find unless a tester or hacker
knows where to look

 Encryption (or lack
thereof)

Is there restricted data perhaps hidden in mobile and embedded file systems
which may be “temporary” and/or not encrypted properly?

 Good encryption patterns Where did the algorithm(s) come from?
Breaking
Software
Security

Use classic IT/PC/web
attacks many of which are
applicable to mobile and
embedded

See Whittaker’s book [20] for 20 attacks that can be applied to mobile
hybrid/web apps

Virus Attack Off-the-shelf software Test for counterfeit logic such as mobile and embedded viruses, malware, etc.
 Third party software Many viruses are embedded in "fun" apps that users download particularly on

“bring your own devices”
 Operating System Can it be trusted?
 Bring your own device Threat from unsecured users
 Battery life Are batteries being depleted unexpectedly due to virus “usage?”
 Embedded multi-tier

system
For example Stuxnet and its offspring

	

Table 2: Software Security Testing Attacks to Use in a Robust Risk-Based Approach (summarized and excerpted from [2])

CrossTalk—November/December 2015 37

FUSING IT & REAL-TIME TACTICAL

testers usually only run checks to verify that the system or soft-
ware meets requirements, which is necessary, but not sufficient,
test attacks should be practiced often. Pure requirements-based
testing can miss large (egregious) errors and vulnerabilities that
can be leveraged to allow access to a system.

Some may see test attacks as a negative. However, attacks
can be viewed as a positive for security testing since these are
the methods hackers are employing and if the efforts can stop
any hacking, that could be considered as a positive as well as
worthwhile. Using the information from an attack, developers
can then improve the overall security of software or systems.

Mobile and embedded attacks were developed for errors
determined from a historic industry taxonomy database [2]. The
attack patterns use classic test and security evaluation tech-
niques. A taxonomy is a classification of error patterns. IEEE
has offered research over the years that many security testers
and hackers form mental models of system failures and then,
learn patterns to find these commonly occurring errors. Attack
patterns build on mental models to aide security testers in a
particular domain, herein for mobile and embedded devices.

This article offers examples of mobile and embedded security
attacks by name although the details are out of scope of this
piece (see [2] for specific actions and details). These attack
patterns are based on researched industry taxonomy, which was
created over a large number of publicly reported security errors
and flaws. Taxonomies and attack patterns will never be compre-
hensive or complete since the nature of systems and software is
evolving and not every project makes public the details of their
vulnerabilities much less how they are found. Readers should
use Table 2 as an introduction then, continue their own research
into taxonomies and attack patterns, which may fit their local
mobile and embedded contexts.

Table 2 is a beginning for mobile and embedded security tes-
ters. Many of these attacks relate to traditional security testing
concepts, but the examples cite specific concerns that mobile
and embedded testers should consider. The security test world
is a fast moving and ever changing area. Newer threats and
error taxonomy patterns are emerging constantly. Mobile and
embedded security testing projects must constantly research,
learn, and improve to stay current with what hackers are doing
and to understand future vulnerabilities.

Summary
The concepts and attacks in this paper should be viewed

as a starting point for projects wishing to improve their secure
software development approaches, given the current poor
practices [22]. Both doing and not doing these concepts can
have impacts on the quality as well as on legal considerations.
Mobile and embedded device use, features, and connections will
continue to increase in the world and could mean that security
threats will also increase. Security concerns impact all engineer-
ing domains e.g., system, hardware, software, and support areas
such as testing. Mobile and embedded projects should be pro-
active during development using concepts such as attack-based
testing to reduce many security vulnerabilities.

Jon Hagar is a senior systems-software
engineer and testing consultant supporting
software product integrity, verification, and
validation with a specialization in mobile
and embedded software systems. Jon
is the lead editor/author on ISO 29119
Software Testing series of Standards,
co-chair of the OMG UML Test Profile

Standard model based test standard, and contributor to IEEE
1012 verification and validation plans.

Phone: 303-903-5536
Email: embedded@ecentral.com
Website: http://breakingembeddedsoftware.com

ABOUT THE AUTHOR

1.	 MSK McClure, Scambray, and Kurtz, “Hacking Exposed” McGraw Hill
2.	 JDH - J. Hagar “Software Test Attacks to Break Mobile and Embedded Devices”, CRC

press, 2013
3.	 Smart Phone Market Growth, ABI research report , 2013
4.	 C. Miller & C. Valasek, “Adventures in Automotive Networks and Control Units”, web

document <www.exploit-db.com/download_pdf/27404/‎>
5.	 . Security threats on embedded consumer devices, OMTP tech report, 2009
6.	 J. Weiss, “Threats impacting the nation” Testimony before the subcommittee on

oversight, investigations, and management, committee on homeland security, House of
Representatives, US Government accounting office, Washington, D.C.

7.	 Coverity Scan 2010 Open Source Integrity Report for Android, see <http://www.
coverity.com/company/press-releases/read/coverity-scan-2010-report-reveals-high-
risk-software-flaws-in-android-html>

 8.	 McAfee, “McAfee Threat Report: 4th quarter 2012”, McAfee Labs Pub, Santa Clara, CA,
2012

9.	 M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K Redon, and R. Borgaonkar, “New
Privacy Issues in mobile telephony: Fix and Verification in computer and communica-
tions security”, ACM, vol/no: missing, pp 205-216, 2012

10.	D. Bhasker, “4G LTE Security for Mobile Network Operators”, Cyber Security and
Information Systems , Vol 1 No 4, pp 20-29

11.	 K Venkatasubramanian, E Vasserman, O. Sokolsky, and I Lee, “ Security and Interoper-
able Medical Device systems”, IEEE security and privacy, Vol 10, No 5, 2012

12.	M. Merkow, and L Raghavan, “Secure and resilient software”, CRC press, 201212.
13.	Agile software - <http://agilemanifesto.org/>
14.	D Kleidermacher “Embedded Systems Security, Practical Methods for Safe and Secure

Software and Systems Development” Newnes books, ISBN :9780123868879, 2012
15.	R Mahmood, “A whitebox approach for automated security testing of android applica-

tions on the cloud”, 7th international workshop on automation of software test , 2012
16.	Taz T. Daughtery, “Security systems through software reliability engineering”, Cyber

Security and Information Systems, Vol 1, No 1, 2012
17.	 IEEE1012 Verification and Validation Plan, IEEE press, 2012
18.	ISO/IEEE/IEC29119 Software Test Standard, IEEE/ISO press, 2013
19.	W.J.W.Z. Chuanxiong Guo, “Smart phone attacks and defenses” Microsoft Research

Pub
20.	. J. Whittaker & H. Thompson “How to Break Software Security” Addison Wesley,

20049.
21.	M.A. Mobarhan, M.A. Mobsrhan, and A. Shahbahrami, “Evaluation of security attacks

on different mobile communication systems”, Canadian Journal on Network and
Information Security, Vol 3, No 1 Aug 2012

22.	J Viega and H. Thompson, “The state of embedded device security”, IEEE security and
privacy, Vol 10, No 5, 2012

REFERENCES

mailto:embedded@ecentral.com
http://breakingembeddedsoftware.com
http://www.exploit-db.com/download_pdf/27404/
http://www.coverity.com/company/press-releases/read/coverity-scan-2010-report-reveals-high-risk-software-flaws-in-android-html
http://www.coverity.com/company/press-releases/read/coverity-scan-2010-report-reveals-high-risk-software-flaws-in-android-html
http://www.coverity.com/company/press-releases/read/coverity-scan-2010-report-reveals-high-risk-software-flaws-in-android-html
http://www.coverity.com/company/press-releases/read/coverity-scan-2010-report-reveals-high-risk-software-flaws-in-android-html
http://agilemanifesto.org/

38 CrossTalk—November/December 2015

COMING EVENTS

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

Better Software Conference East
Nov 8- Nov 13, 2015
Orlando, Florida
http://bsceast.techwell.com

30th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2015)
November 9-13, 2015
Lincoln, Nebraska
http://ase2015.unl.edu/#tab-main

ACTION15: Actionable Analytics for SE
Nov 9, 2015 – Nov 13, 2015
Lincoln, Nebraska
http://action15.github.io

2015 IEEE 23rd International Conference on
Network Protocols (ICNP)
Nov 10, 2015 – Nov 13, 2015
San Francisco, CA
http://icnp15.cs.ucr.edu

INFuture2015: e-Institutions – Openness,
Accessibility, and Preservation
Nov 11, 2015 - Nov 13, 2015
Zagreb, Croatia
http://infoz.ffzg.hr/INFuture

2015 SC - International Conference for High
Performance Computing, Networking, Storage
and Analysis
Nov 15, 2015 – Nov 20, 2015
Austin, TX
http://www.ieee.org/conferences_events/conferences/confer-
encedetails/index.html?Conf_ID=32761

Software Solutions Conference 2015
Hilton Crystal City, Arlington, VA
November 16-18, 2015
http://www.sei.cmu.edu/ssc/2015/

IEEE Real-Time Systems Symposium
San Antonio, Texas
December 1-4, 2015
http://2015.rtss.org/

ReConFig 2015
Mayan Riviera, Mexico
December 7-9, 2015
http://www.reconfig.org

Cyber Defense Initiative 2015
Washington, DC
Dec 12-19, 2015
http://www.sans.org/event/cyber-defense-initiative-2015

13th Annual IEEE Consumer Communications &
Networking Conference
Las Vegas, NV
January 9-12, 2016
http://ccnc2016.ieee-ccnc.org/

12th Annual Open Forum for Large-Scale Network
Defense Analytics
Daytona Beach, FL
January 11-14, 2016
http://www.cert.org/flocon/

International Conference on Verification, Model
Checking, and Abstract Interpretation 2016
St. Petersburg, FL
January 17-19, 2016
http://conf.researchr.org/home/VMCAI-2016

ICCMS 2016: the 7th International conference on
Computer Modeling and Simulation
Brisbane, Australia
Jan 18-19, 2016
http://www.iccms.org/

MODELSWARD 2016- The 4th International
Conference on Model-Driven Engineering
and Software
Rome, Italy
Feb 19-21, 2016
http://www.modelsward.org/

http://www.crosstalkonline.org/events
http://bsceast.techwell.com
http://ase2015.unl.edu/#tab-main
http://action15.github.io
http://icnp15.cs.ucr.edu
http://infoz.ffzg.hr/INFuture
http://www.ieee.org/conferences_events/conferences/confer-encedetails/index.html?Conf_ID=32761
http://www.ieee.org/conferences_events/conferences/confer-encedetails/index.html?Conf_ID=32761
http://www.ieee.org/conferences_events/conferences/confer-encedetails/index.html?Conf_ID=32761
http://www.sei.cmu.edu/ssc/2015/
http://2015.rtss.org/
http://www.reconfig.org
http://www.sans.org/event/cyber-defense-initiative-2015
http://ccnc2016.ieee-ccnc.org/
http://www.cert.org/flocon/
http://conf.researchr.org/home/VMCAI-2016
http://www.iccms.org/
http://www.modelsward.org/

CrossTalk—November/December 2015 39

FUSING IT & REAL-TIME TACTICALBACKTALK

I am an Air Force Brat – in fact, there’s been only a total of 24
days of my life that I did not have a military ID card (I’ve had de-
pendent, active duty, and retired). You have a different viewpoint
on life if you were a military dependent and grew up overseas.
You appreciate some things a whole lot more (I lived most of
my childhood without television – I always felt it left scars). One
thing I appreciate is time.

I grew up in Turkey - Istanbul, to be precise. Istanbul was a
wonderful city to grow up in, full of history. Istanbul was the head
of three empires – Eastern Roman, Byzantine, and Ottoman. The
city had history everywhere you looked! Also, Istanbul is one of
the few cities that span two continents (the Bosporus separates
the city into two parts – one in Europe, one in Asia). We lived
there during the 1960s – and my dad (like his dad before him)
was possibly a tiny bit OCD about “time.” When my dad was
a very young man, he remembers his dad buying him his first
wristwatch. My dad, in turn, bought me a wristwatch when I was
8. I will admit that I was forever breaking it – he seemed to have
patiently re-bought me one every few years. He even bought me
yet another new one when I discovered two things: 1) a strong
magnet from an old speaker will stop a mechanical wristwatch;
and 2) removing the magnet does not make it start again.

The problem (when living in Turkey) was that there was no
easy way to accurately set the time. Today, of course, we are
used to having cell phones (with precisely accurate times), plus
numerous other ways to determine the right time (down to the
millisecond, if needed): TV, the internet, radio, etc. We had none
of these in Istanbul. But – we had a shortwave radio. It ran on
5 vacuum tubes – a Hallicrafters set he had bought back in
the late 1950s when we lived in Scotland (I was born there). It
picked up AM only - FM radio was not really popular until the
1960s. However, for those of you who understand how AM
works – it picked up BOTH long and short-wave! Long wave is
what we call “regular AM radio” – and shortwave? Well, that’s
where the magic came in. I could listen to stations from ALL
OVER THE WORLD! The British Broadcasting Channel and
BBC news. Australia. The Voice of America. I would wait around
until it grew dark (shortwaves propagate or “bounce” at night)
and twirl the dial and be transported all over the world.

And then my dad let me in on the secret of radio station
WWV – Ft. Collins Colorado. Operated then by the National
Bureau of Standards (now run by NIST – National Institute of
Science and Technology). They broadcast (at 2.5, 5, 10 and 15
Mhz back then, as I recall) a time signal, accurate to the second.
Dad and I used a tree, and ran a 7.5-meter antenna wire (which,
he explained to me, was a quarter-wavelength signal for 10 Mhz.
I found this relationship amazing, and learned how to convert
Hz to wavelengths). We just had to remember to disconnect the
antenna connection every time it clouded up (hate to have a
lightening strike blow the radio!).

So, every Saturday night, it was our ritual. We’d turn on the
radio, tune in WWV, and set all of the watches and clocks in the
house. It was something that Dad and I did together.

Time is important, of course. If things occur out or order (too
early or too late), “time” itself becomes wasted. I traveled to Bal-
timore this summer to attend a meeting – and I wanted to visit a
few relatives along the route. I drove up and made the following
observation: Note to self: Update the map on the GPS BEFORE
you leave - because knowing the detours for construction com-
ing into Baltimore from Washington DC would really be nice.

It’s all about time.
This issue is about “Fusing IT and Real-Time Tactical.” I was

trying to think of how much you have to understand about
technology to just appreciate topic. Information technology
used to be the domain of punch cards and grey-haired COBOL
programmers who were one step away from retirement. Real-
time development used to be the domain of a few weirdo’s in
the closed rooms who ignored modern compilers and hardware,
and who hand-coded machine code that ran on (maybe) 8-bit
processors. They had NOTHING in common. Now, both are
critical technologies with complex interrelationships.

Things change, and I repeat, it’s all about time.
My introduction to shortwave radio technology occurred

almost 50 years ago. Back in 1997, I gave Dad a birthday gift
of a modern “atomic” clock that adjusted itself every night. He
marveled over it constantly. A few years ago, I bought myself an
“atomic” wristwatch. I can’t think of anything I do that requires
accuracy of +/- 0.5 seconds, but you never know. Every time I
look at my watch, I think back to the days of the shortwave radio
in Istanbul, and smile a little.

My Dad passed away three years ago – and to the very end,
he and I argued about which wristwatch was the best. I now
teach college – and it’s common to have a class of students
where nobody actually wears a watch anymore. They all use
their cellphone. I, in turn, would give almost anything to be back
in Istanbul, wristwatch in had, with my Dad, slowly tuning the
radio to search for the voice saying, “…..tick….tick….at the tone,
the time will be 20 hours, 50 minutes coordinated Universal
Time.” I still have the Hallicrafters radio. It’s a reminder of special
times. I didn’t realize how special those times were until they
were long past.

It’s all about time. You shouldn’t waste it – whether it’s IT,
tactical, real-time or life.

David A. Cook
Professor of Computer Science
Stephen F. Austin State University
cookda@sfasu.edu

It’s About Time!

mailto:cookda@sfasu.edu

CrossTalk thanks the
above organizations for
providing their support.

CrossTalk / 517 SMXS MXDED
6022 Fir Ave.
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

http://www.navair.navy.mil
https://buildsecurityin.us-cert.gov/swa/about.html
http://www.navair.navy.mil
http://www.309smxg.hill.af.mil

	Front Cover
	Table of Contents
	From the Sponsor
	Cybersecurity and Modern Tactical Systems
	Augmenting the Remotely Operated Automated Mortar System with Message Passing
	Massive Storage in a Miniature (Embedded) Package
	International Partners with Multi-Site Thin Client Interconnectivity
	Threat Modeling for Aviation Computer Security
	Extending Life Cycle Models for a Repeatable Innovation Strategy
	Mobile and Embedded Security Mitigations for Counterfeit Threats and Software Vulnerabilities
	Upcoming Events
	BackTalk
	Back Cover

